
University of Turin

School of Management and Economics

Master's Degree in

Quantitative Finance and Insurance

Optimizing the behavior of trading agents

using genetic algorithms in a stock

exchange simulation framework with real

data.

Main supervisor: Candidate:

Prof. Pietro Terna Gerson Massobrio

Second supervisor:

Prof. Sergio Margarita

Academic Year 2012/2013

1

Contents

1 NetLogo and BehaviorSearch 7
1.1 Genetic Algorithms . 7

1.1.1 Introduction . 7
1.1.2 Background . 8
1.1.3 Structure . 11
1.1.4 Limitations . 16

1.2 BehaviorSearch . 18
1.2.1 Overview . 18
1.2.2 What is BehaviorSearch . 18
1.2.3 How it works . 19

1.3 BehaviorSearch Tutorial . 20
1.3.1 Installation and Structure 20
1.3.2 The BehaviorSearch experiment editor 22
1.3.3 Run BehavorSearch . 37
1.3.4 Examples . 39
1.3.5 Comparison between search algorithms 54
1.3.6 Technical achievements . 82

2 Stock exchange simulation and search of the optimal agents be-
havior 84
2.1 User manual . 84

2.1.1 g1 _ CDA _ basic _ model 84
2.1.2 Level Price Real Data Agents 86
2.1.3 Trend Agents . 89
2.1.4 Volume Agents . 91
2.1.5 Stop Loss Agents . 92
2.1.6 Covered Agents . 98
2.1.7 Bollinger Bands Agents . 106

2.2 Basic Framework . 108
2.3 Market structures . 115

2

2.3.1 Market structures: basic framework plus one trading agents
breed . 115

2.3.2 Market structures: basic framework plus more than one
trading agents breed . 125

2.3.3 Agents e�ect on the market 129
2.4 Simulations . 143

2.4.1 Comparisons between arti�cial and real market : AV.nlogo . 145
2.4.2 Comparisons between arti�cial and real market : AT.nlogo . 145
2.4.3 Comparisons between arti�cial and real market : AB.nlogo . 145
2.4.4 Comparisons between arti�cial and real market : ASL.nlogo 149
2.4.5 Comparisons between arti�cial and real market : AC.nlogo . 149
2.4.6 Comparisons between arti�cial and real market : ABT.nlogo 152
2.4.7 Comparisons between arti�cial and real market : A-C-SL.nlogo152
2.4.8 Comparisons between arti�cial and real market : A-B-C-T-

SL-V.nlogo . 155
2.5 Optimize Agents Behavior . 157

2.5.1 Preliminary BehaviorSearch test: the price structure 158
2.5.2 BehaviorSearch test number 1: VolumeAgents 160
2.5.3 BehaviorSearch test number 2: trendAgents 162
2.5.4 BehaviorSearch test number 3: BBAgents 164
2.5.5 BehaviorSearch test number 4: SLAgents 167
2.5.6 BehaviorSearch test number 5: CoveredAgents 170
2.5.7 BehaviorSearch test number 6: trendAgents + BBAgents . . 172
2.5.8 BehaviorSearch test number 7: SLAgents + CoveredAgents . 176
2.5.9 BehaviorSearch test number 8: all trading agents breeds . . 179

2.6 Statistical tests with R upon results 186
2.6.1 ANOVA test on the �tness results of agents breeds 188
2.6.2 Linear regressions between unconstrained �tness of breeds

and constrained �tness of breeds 191
2.7 Technical achievements . 206

3 Conclusions 210

3

Aknowledgements

I would like to express my deep gratitude to Professor Pietro Terna, my main su-
pervisor, for his patient guidance, enthusiastic encouragement and useful critiques
of this experimental work.

Finally, I wish to thank my parents, my girlfriend, and my classmates, for their
support and encouragement throughout my study.

4

Introduction

Uncertainty in economics is an unknown prospect of gain or loss, whether quan-
ti�able as risk or not. Without it, household behavior would be una�ected by
uncertain employment and income prospects, �nancial and capital markets would
reduce to exchange of a single instrument in each market period, and there would
be no communications industry.

Economic theories are frequently tested empirically, largely through the use
of econometrics using economic data. The controlled experiments common to the
physical sciences are di�cult and uncommon in economics, and instead broad data
is observationally studied; this type of testing is typically regarded as less rigorous
than controlled experimentation, and the conclusions typically more tentative.
However, the �eld of experimental economics is growing, and increasing use is
being made of natural experiments.

Statistical methods such as regression analysis are common. Practitioners use
such methods to estimate the size, economic signi�cance, and statistical signi�-
cance ('signal strength') of the hypothesized relation(s) and to adjust for noise
from other variables. By such means, a hypothesis may gain acceptance, although
in a probabilistic, rather than certain, sense. Acceptance is dependent upon the
falsi�able hypothesis surviving tests. Use of commonly accepted methods need
not produce a �nal conclusion or even a consensus on a particular question, given
di�erent tests, data sets, and prior beliefs.

Criticism based on professional standards and non-replicability of results serve
as further checks against bias, errors, and over-generalization, although much eco-
nomic research has been accused of being non-replicable, and prestigious journals
have been accused of not facilitating replication through the provision of the code
and data.

Prior to, and in the wake of the �nancial crisis, interest has grown in ABMs as
possible tools for economic analysis. ABMs do not assume the economy can achieve
equilibrium and "representative agents" are replaced by agents with diverse, dy-
namic, and interdependent behavior including herding. ABMs take a "bottom-up"
approach and can generate extremely complex and volatile simulated economies.
ABMs can represent unstable systems with crashes and booms that develop out

5

of non-linear (disproportionate) responses to proportionally small changes.
However, the idea of agent-based modeling was developed as a relatively simple

concept in the late 1940s. Since it requires computation-intensive procedures, it
did not become widespread until the 1990s.

In fact ABMs are typically implemented as computer simulations,either as cus-
tom software, or via ABM toolkits, and this software can be then used to test how
changes in individual behaviors will a�ect the system's emerging overall behavior.

ABM

An agent-based model (ABM) is a class of computational models for simulating
the actions and interactions of autonomous agents (both individual or collective
entities such as organizations or groups) with a view to assessing their e�ects on
the system as a whole. It combines elements of game theory, complex systems,
emergence, computational sociology, multi-agent systems, and evolutionary pro-
gramming.

With the appearance of StarLogo in 1990, Swarm and NetLogo in the mid-
1990s and RePast and AnyLogic in 2000, or GAMA in 2007 as well as some
custom-designed code, modelling software became widely available and the range
of domains that ABM was applied to, grew.

Citing Axtell (2006): 'Compactly, in agent based computational models, a
population of data structures representing individual agents is instantiated and
permitted to interact. One then looks for systematic regularities, often at the
macro level, to emerge from the local interactions of the agents. The shorthand
for this is that macroscopic regularities 'grow' from the bottom up. No equations
governing the overall social structure are stipulated in multi-agent computational
models, thus avoiding any aggregation or misspeci�cation bias. Typically, the
only equations present are those used by individual agents for decision-making.
Di�erent agents may have di�erent decision rules and di�erent information; usu-
ally, no agents have global information, and the behavioral rules involve bounded
computational capacities, the agents are 'simple'. This relatively new methodol-
ogy facilitates the modeling of agent heterogeneity, boundedly rational behavior,
nonequilibrium dynamics, and spatial processes. A particularly natural way to
implement agent-based models is through ' object-oriented' programming. '

6

NetLogo

NetLogo is an agent-based programming language and integrated modeling envi-
ronment.

NetLogo was designed, in the spirit of the Logo programming language, to be
"low threshold and no ceiling". It teaches programming concepts using agents
in the form of turtles, patches, "links" and the observer. NetLogo was designed
for multiple audiences in mind, in particular: teaching children in the education
community, and for domain experts without a programming background to model
related phenomena.

The NetLogo environment enables exploration of emergent phenomena. It
comes with an extensive models library including models in a variety of domains,
such as economics, biology, physics, chemistry, psychology, system dynamics. Net-
Logo allows exploration by modifying switches, sliders, choosers, inputs, and other
interface elements. Beyond exploration, NetLogo allows authoring of new models
and modi�cation of existing models. NetLogo is freely available from the NetLogo
website. It is in use in a wide variety of educational contexts from elementary
school to graduate school. Many teachers make use of NetLogo in their curric-
ula. NetLogo was designed and authored in 1999 by Uri Wilensky, director of
Northwestern University's Center for Connected Learning and Computer-Based
Modeling.

It is particularly well suited for modeling complex systems developing over time.
Modelers can give instructions to hundreds or thousands of agents all operating
independently. This makes it possible to explore the connection between the micro-
level behavior of individuals and the macro-level patterns that emerge from their
interaction.

My thesis is mainly organized in two parts:

1. the �st one (Chapter 1) can be de�ned as a 'methodological' part. It summa-
rizes the characteristics of the genetic algorithm, and describes the properties
of BehaviorSearch software tool, showing some simple examples of how it in-
terfaces with NetLogo.

2. The second one (Chapter 2), is a more 'empirical' part. It develops the
interaction between NetLogo and BehaviorSearch, considering more complex
problems. It treats the analysis with BehaviorSearch of the behavior and
the e�ect of some categories of trading agents, inserted in a stock exchange
simulation with real data, created with NetLogo.

The results coming from the interaction of the two programs are �nally
examined using two statistical tools: ANOVA and linear regression.

Chapter 3 summarizes the results of the two parts, concluding my work.

7

Chapter 1

NetLogo and BehaviorSearch

1.1 Genetic Algorithms

1.1.1 Introduction

In the computer science �eld of arti�cial intelligence, a genetic algorithm (GA) is
a search heuristic that mimics the process of natural selection. This heuristic (also
sometimes called a metaheuristic) is routinely used to generate useful solutions to
optimization and search problems. Genetic algorithms belong to the larger class
of evolutionary algorithms (EA), which generate solutions to optimization prob-
lems using techniques inspired by natural evolution, such as inheritance, mutation,
selection, and crossover.

Those alghorithms are generally based on: Holland (1992) two primary natural
processes; natural selection and sexual reproduction. The �rst determines which
members of a population survive to reproduce, and the second ensures mixing
and recombination among the genes of their o�spring. When sperm and ova fuse,
matching chromosomes line up with one another and then cross over partway
along their length, thus swapping genetic material. This mixing allows creatures
to evolve much more rapidly than they would if each o�spring simply contained a
copy of the genes of a single parent, modi�ed occasionally by mutation. Selection
is simple: if an organism fails some test of �tness, such as recognizing a predator
and �eeing, it dies.

Genetic algorithms �nd application in bioinformatics, phylogenetics, compu-
tational science, engineering, economics, chemistry, manufacturing, mathematics,
physics, pharmacometrics and other �elds.

In a genetic algorithm, a population of candidate solutions (called individuals,
creatures, or phenotypes) to an optimization problem is evolved toward better
solutions. Each candidate solution has a set of properties (its chromosomes or
genotype) which can be mutated and altered; traditionally, solutions are repre-

8

sented in binary as strings of 0s and 1s, but other encodings are also possible.
Initially many individual solutions are (usually) randomly generated to form an
initial population. The population size depends on the nature of the problem, but
typically contains several hundreds or thousands of possible solutions. Tradition-
ally, the population is generated randomly, allowing the entire range of possible
solutions (the search space). Occasionally, the solutions may be "seeded" in areas
where optimal solutions are likely to be found.

Genetic algorithms are simple to implement, but their behavior is di�cult
to understand;citing Holland (1992) �by harnessing the mechanisms of evolution,
researchers may be able to `breed' programs that solve problems even when no person
can fully understand their structure�.

So in general it is di�cult to understand why these algorithms frequently suc-
ceed at generating solutions of high �tness when applied to practical problems.The
building block hypothesis (BBH) consists of:

1. A description of a heuristic that performs adaptation by identifying and
recombining "building blocks", i.e. low order, low de�ning-length schemata
with above average �tness.

2. A hypothesis that a genetic algorithm performs adaptation by implicitly and
e�ciently implementing this heuristic.

Goldberg describes the heuristic as follows:

short, low order, and highly �t schemata are sampled, recombined
(crossed over), and resampled to form strings of potentially higher �t-
ness. In a way, by working with these particular schemata (the build-
ing blocks), we have reduced the complexity of our problem; instead
of building high-performance strings by trying every conceivable com-
bination, we construct better and better strings from the best partial
solutions of past samplings.

Because highly �t schemata of low de�ning length and low order play such an
important role in the action of genetic algorithms, we have already given them
a special name: building blocks. Just as a child creates magni�cent fortresses
through the arrangement of simple blocks of wood, so does a genetic algorithm
seek near optimal performance through the juxtaposition of short, low-order, high-
performance schemata, or building blocks.

1.1.2 Background

To understand how the genetic algorithm properly works, I have to give some
de�nition, about the concepts previously mentioned.

9

- Search algorithms: In computer science, a search algorithm is an algorithm
for �nding an item with speci�ed properties among a collection of items. The
items may be stored individually as records in a database; or may be elements
of a search space de�ned by a mathematical formula or procedure.

Algorithms for searching virtual spaces are used in constraint satisfaction
problem, where the goal is to �nd a set of value assignments to certain
variables that will satisfy speci�c mathematical equations and inequations.
They are also used when the goal is to �nd a variable assignment that will
maximize or minimize a certain function of those variables. Algorithms for
these problems include the basic brute-force search (also called "uninformed"
or "random" search), and a variety of heuristics that try to exploit partial
knowledge about structure of the space, such as linear relaxation, constraint
generation, and constraint propagation.

A heuristic function, or simply a heuristic, is a function that ranks alterna-
tives in search algorithms at each branching step based on available infor-
mation to decide which branch to follow.

An important subclass are the local search methods, that view the elements
of the search space as the vertices of a graph, with edges de�ned by a set of
heuristics applicable to the case; and scan the space by moving from item
to item along the edges, for example according to the steepest descent or
best-�rst criterion, or in a stochastic search. This category includes a great
variety of general metaheuristic methods, such as simulated annealing, tabu
search, A-teams, and genetic programming, that combine arbitrary heuristics
in speci�c ways.

- Schemata: A schema is a template in computer science used in the �eld
of genetic algorithms that identi�es a subset of strings with similarities at
certain string positions. Schemata are a special case of cylinder sets; and
so form a topological space. For example, consider binary strings of length
6. The schema 1**0*1 describes the set of all words of length 6 with 1's at
the �rst and sixth positions a 0 at the fourth position. The * is a wildcard
symbol, which means that positions 2, 3 and 5 can have a value of either 1
or 0. The order of a schema is de�ned as the number of �xed positions in
the template, while the de�ning length δ(H) is the distance between the �rst
and last speci�c positions. The order of 1**0*1 is 3 and its de�ning length
is 5. The �tness of a schema is the average �tness of all strings matching
the schema. The �tness of a string is a measure of the value of the encoded
problem solution, as computed by a problem-speci�c evaluation function.

- Cylinder sets In mathematics, a cylinder set is the natural open set of a
product topology. Cylinder sets are particularly useful in providing the base

10

of the natural topology of the product of a countable number of copies of
a set. If V is a �nite set, then each element of V can be represented by
a letter, and the countable product can be represented by the collection of
strings of letters. In general Consider the cartesian product X =

∏
αXα , of

topological spaces Xα, indexed by some index α. The canonical projection
is the function pα : X → Xα that maps every element of the product to its α
component. Then, given any open set U ⊂ Xα, the preimage p

−1
α (U) is called

an open cylinder. The intersection of a �nite number of open cylinders is a
cylinder set. The collection of open cylinders form a subbase of the product
topology on X; the collection of all cylinder sets thus form a basis.

- Topological spaces: In topology and related branches of mathematics, a
topological space is a set of points, along with a set of neighbourhoods for
each point, that satisfy a set of axioms relating points and neighbourhoods.
The de�nition of a topological space relies only upon set theory and is the
most general notion of a mathematical "space" that allows for the de�ni-
tion of concepts such as continuity, connectedness, and convergence. Other
spaces, such as manifolds and metric spaces, are specializations of topologi-
cal spaces with extra structures or constraints. Being so general, topological
spaces are a central unifying notion and appear in virtually every branch of
modern mathematics. The branch of mathematics that studies topological
spaces in their own right is called point-set topology or general topology.
The utility of the notion of a topology is shown by the fact that there are
several equivalent de�nitions of this structure. The most commonly used is
that in terms of open sets.

11

Open sets de�nition: Given such a structure, we can de�ne a
subset U of X to be open if U is a neigh-
bourhood of all points in U.Let de�ne
N to be a neighbourhood of x if N con-
tains an open set U such that x ∈ U .
A topological space is then a set X to-
gether with a collection of subsets of X,
called open sets and satisfying the fol-
lowing axioms:
(1) The empty set and X itself are open.
(2) Any union of open sets is open.
(3) The intersection of any �nite num-
ber of open sets is open.
The collection τ of open sets is then
also called a topology on X, or, if more
precision is needed, an open set topol-
ogy. The sets in τ are called the open
sets, and their complements in X are
called closed sets. A subset of X may be
neither closed nor open, either closed or
open, or both. A set that is both closed
and open is called a clopen set.

1.1.3 Structure

In Holland (1992) the GA structure is introduced by giving, �rst of all, the def-
inition of classi�er system; it consists in a set of rules, each of which performs
particular actions every time its conditions are satis�ed by some piece of informa-
tion. From a general point of view, any program that can be written in a standard
programming language such as Python can be rewritten as a classi�er system.

Ferraris and Lamieri (2004) describe a non learning classi�er system through
four principal components:

- List of classi�ers (population of classi�ers).

- List of messages that plays the role of a 'message board' for communications
and short term memory.

- Input interface (detector) that represents the environment state.

- Output interface (e�ector) that ensures interaction with the environment or
its change.

12

At any time the classi�er list can contain zero or more classi�er. Each classi�er
consists of a string of �xed length and binary alphabet. A classi�er list consists of
a set of classi�ers looking as follows:

condition1, condition2, ..., conditionN : action

When the condition part of the classi�er matches the input message, activation
of the classi�er occurs, i.e. the classi�er puts one or more messages on the message
list. The output interface is a device or sub-program that receives action messages
and on their basis performs manipulations with the environment.

Classi�er system is being optimized by using learning rule called 'bucket brigade'
and evolutionary algorithms (genetic algorithms). During learning process rules
priorities (strengths) are changed. In case of success current and previous activated
rules are encouraged. Evolutionary methods are used for new rules searching.

In general, to evolve classi�er rules that solve a particular problem, one simply
starts with a population of random strings of l's and 0's and rates each string
according to the quality of its result. Depending on the problem, the measure of
�tness could be business pro�tability, game payo�, error rate or any number of
other criteria. High-quality strings mate; low-quality ones perish. As generations
pass, strings associated with improved solutions will predominate.

The conditions and actions are represented by strings of bits corresponding to
the presence or absence of speci�c characteristics in the rules' input and output.

For what concerns Genetic Algorithms, the chief problem is the construction
of a "genetic code" that can represent the structure of di�erent programs, just as
DNA represents the structure of a person or a mouse. The evolution usually starts
from a population of randomly generated individuals, and is an iterative process,
with the population in each iteration called a generation. In each generation, the
�tness of every individual in the population is evaluated; the �tness is usually
the value of the objective function in the optimization problem being solved. The
more �t individuals are stochastically selected from the current population, and
each individual's genome is modi�ed (recombined and possibly randomly mutated)
to form a new generation. The new generation of candidate solutions is then used
in the next iteration of the algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been produced, or a satisfactory
�tness level has been reached for the population.

A typical genetic algorithm requires:

- a genetic representation of the solution domain;

- a �tness function to evaluate the solution domain.

A standard representation of each candidate solution is as an array of bits.
Arrays of other types and structures can be used in essentially the same way. The

13

main property that makes these genetic representations convenient is that their
parts are easily aligned due to their �xed size, which facilitates simple crossover
operations.

During each successive generation, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through a
�tness-based process, where �tter solutions (as measured by a �tness function)
are typically more likely to be selected. Certain selection methods rate the �tness
of each solution and preferentially select the best solutions. Other methods rate
only a random sample of the population, as the former process may be very time-
consuming.

The �tness function is de�ned over the genetic representation and measures
the quality of the represented solution. The �tness function is always problem
dependent. For instance, in the knapsack problem one wants to maximize the
total value of objects that can be put in a knapsack of some �xed capacity. A
representation of a solution might be an array of bits, where each bit represents
a di�erent object, and the value of the bit (0 or 1) represents whether or not the
object is in the knapsack. Not every such representation is valid, as the size of
objects may exceed the capacity of the knapsack. The �tness of the solution is
the sum of values of all objects in the knapsack if the representation is valid, or 0
otherwise.

To be more precise I give some notations,to de�ne a genetic algorithm:
Let Ω be the space of length l binary strings, and let n = 2l . For u, v ∈ Ω, let

u ⊕ v denote the bitwise-and of u and v, and let u ⊕ v denote the bitwise-xor of
u and v. Let = u denote the ones-complement of u, and]u denote the number of
ones in the binary representation of u.

Integers in the interval [0, n) = [0, 2l) are identi�ed with the elements of Ω
through their binary representation. This correspondence allows Ω to be regarded
as the product group

Ω = Z2 × ...× Z2

where the group operation is ⊕. The elements of Ω corresponding to the
integers 2i, i = 0, ..., l− 1 form a natural basis for Ω.

The column vectors of length l form the elements of Ω. Let 1 denote the vector
of ones (or the integer 2l1). Thus, uTv =](u⊕ v)′ and = u = 1⊕ u.

For any u ∈ Ω , let Ωu denote the subgroup of Ω generated by (2i : u⊕2i = 2i).
In other words, v ∈ Ωu if and only if v ⊕u = v. For example, if l = 6, then
Ω9 = {0, 1, 8, 9} = {000000, 000001, 001000, 001001}.

A schema is a subset of Ω where some string positions are determined (�xed)
and some are not determined (variable). Schemata are traditionally denoted by

14

pattern strings, where a special symbol is used to denote a not determined bit.
Using the symbol ∗ for this purpose: the schema denoted by the pattern string
10 ∗ 01∗ is the set of strings {100010, 100011, 101010, 101011, }.

Alternatively a schema can also be de�ned as: the set Ωu⊕ v, where u, v ∈ Ω,
and where u⊕v = 0. In this notation, u is a mask for the variable positions, and v
determines the �xed positions. For example, the schema Ω0,0,1,0,0,1⊕100010 would
be the schema 10 ∗ 01∗ described above.

This de�nition makes it clear that a schema Ωu⊕ v with v = 0 is a subgroup
of Ω, and a schema Ωu⊕ v is a coset of this subgroup.

Following standard practice, we will de�ne the order of a schema as the number
of �xed positions. In other words, the order of the schema Ω=u is]u (since u is a
mask for the �xed positions).

A population for a genetic algorithm over length l binary strings is usually
interpreted as a multiset (set with repetitions) of elements of Ω. A population can

also be interpreted as a 2l dimensional incidence vector over the index set Ω. if
X is a population vector, then Xi is the number of occurrences of i ∈ Ω in the
population. A population vector can be normalized by dividing by the population
size. For a normalized population vector x,

∑
i xi = 1. Let

∆ = {x ∈ Rn :
∑
i

xi = 1, xi ≥ 0 for any i ∈ Ω}

Thus a normalized population vector is an element of ∆. Geometrically, ∆
is the n − 1 dimensional unit simplex in Rn . Note that elements of ∆ can be
interpreted as probability distributions over Ω.

If expr is a Boolean expression, then

[expr] = {1 if expr is true; 0 if expr is false

The simple genetic algorithm can be described through a heuristic function G
: ∆→ ∆. G contains all of the details of selection, crossover, and mutation. The
simple genetic algorithm is given by:

1 Choose a random population of size r from Ω.

2 Express the population as an incidence vector X indexed over Ω.

3 Let y = G(X/r). (Note that X/r and y are probability distributions over Ω.)

15

4 for k from 1 to r do

5 Select individual i ∈ Ω according to the probability distribution y.

6 Add i to the next generation population Z.

7 endfor

8 Let X = Z.

9 Go to step 3.

If X is a population, then y = G(X/r) is the expected population after one
generation of the simple genetic algorithm. In this framework we can relate to the
schema theorem, that is a statement about the schema averages of the population
y.

The heuristic function G can be written as the composition of three heuristic
functions F, C, and U which describe selection, crossover, and mutation respec-
tively. In other words,

G(x) = U(C(F (x))) = U ◦ C ◦ F (x).

Holland's Schema Theorem: it is widely taken to be the foundation for
explanations of the power of genetic algorithms. It says that short, low-order
schemata with above-average �tness increase exponentially in successive genera-
tions. The theorem was proposed by John Holland in the 1970s.

A general equation is:

E(m(H, t+ 1)) ≥ m(H, t)f(H)

at
[1− p].

Here m(H, t) is the number of strings belonging to schema H at generation
t, f(H) is the observed �tness of schema H and at is the observed average �tness
at generation t. The probability of disruption p is the probability that crossover
or mutation will destroy the schema H. It can be expressed as:

p =
δ(H)

l − 1
pc + o(H)pm

where o(H) is the order of the schema, l is the length of the code, pm is the
probability of mutation and pc is the probability of crossover. So a schema with a
shorter de�ning length δ(H) is less likely to be disrupted.

An often misunderstood point is why the Schema Theorem is an inequality
rather than an equality. The answer is in fact simple: the Theorem neglects the
small, yet non-zero, probability that a string belonging to the schema H will be
created "from scratch" by mutation of a single string (or recombination of two
strings) that did not belong to H in the previous generation.

16

1.1.4 Limitations

- Repeated �tness function evaluation for complex problems is often the most
prohibitive and limiting segment of arti�cial evolutionary algorithms. Find-
ing the optimal solution to complex high dimensional, multimodal problems
often requires very expensive �tness function evaluations. In real world prob-
lems such as structural optimization problems, one single function evaluation
may require several hours to several days of complete simulation. Typical
optimization methods can not deal with such types of problem. In this case,
it may be necessary to forgo an exact evaluation and use an approximated
�tness that is computationally e�cient. It is apparent that amalgamation
of approximate models may be one of the most promising approaches to
convincingly use GA to solve complex real life problems.

- Genetic algorithms do not scale well with complexity. That is, where the
number of elements which are exposed to mutation is large there is often an
exponential increase in search space size. This makes it extremely di�cult
to use the technique on problems such as designing an engine, a house or
plane. In order to make such problems tractable to evolutionary search, they
must be broken down into the simplest representation possible. Hence we
typically see evolutionary algorithms encoding designs for fan blades instead
of engines, building shapes instead of detailed construction plans, airfoils
instead of whole aircraft designs. The second problem of complexity is the
issue of how to protect parts that have evolved to represent good solutions
from further destructive mutation, particularly when their �tness assessment
requires them to combine well with other parts.

- The "better" solution is only in comparison to other solutions. As a result,
the stop criterion is not clear in every problem.

- In many problems, GAs may have a tendency to converge towards local op-
tima or even arbitrary points rather than the global optimum of the problem.
This means that it does not "know how" to sacri�ce short-term �tness to
gain longer-term �tness. The likelihood of this occurring depends on the
shape of the �tness landscape: certain problems may provide an easy ascent
towards a global optimum, others may make it easier for the function to
�nd the local optima. This problem may be alleviated by using a di�erent
�tness function, increasing the rate of mutation, or by using selection tech-
niques that maintain a diverse population of solutions, although the Wright
(2011) No Free Lunch theorem proves that there is no general solution to this
problem. A common technique to maintain diversity is to impose a "niche
penalty", wherein, any group of individuals of su�cient similarity (niche

17

radius) have a penalty added, which will reduce the representation of that
group in subsequent generations, permitting other (less similar) individuals
to be maintained in the population. This trick, however, may not be e�ec-
tive, depending on the landscape of the problem. Another possible technique
would be to simply replace part of the population with randomly generated
individuals, when most of the population is too similar to each other. Diver-
sity is important in genetic algorithms (and genetic programming) because
crossing over a homogeneous population does not yield new solutions. In
evolution strategies and evolutionary programming, diversity is not essential
because of a greater reliance on mutation.

- Operating on dynamic data sets is di�cult, as genomes begin to converge
early on towards solutions which may no longer be valid for later data. Sev-
eral methods have been proposed to remedy this by increasing genetic di-
versity somehow and preventing early convergence, either by increasing the
probability of mutation when the solution quality drops (called triggered
hypermutation), or by occasionally introducing entirely new, randomly gen-
erated elements into the gene pool (called random immigrants). Again, evo-
lution strategies and evolutionary programming can be implemented with a
so-called "comma strategy" in which parents are not maintained and new
parents are selected only from o�spring. This can be more e�ective on dy-
namic problems.

- GAs cannot e�ectively solve problems in which the only �tness measure is
a single right/wrong measure (like decision problems), as there is no way to
converge on the solution (no hill to climb). In these cases, a random search
may �nd a solution as quickly as a GA. However, if the situation allows the
success/failure trial to be repeated giving (possibly) di�erent results, then
the ratio of successes to failures provides a suitable �tness measure.

- For speci�c optimization problems and problem instances, other optimization
algorithms may �nd better solutions than genetic algorithms (given the same
amount of computation time). Alternative and complementary algorithms
include evolution strategies, evolutionary programming, simulated annealing,
Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony
optimization, particle swarm optimization) and methods based on integer
linear programming. The question of which, if any, problems are suited to
genetic algorithms (in the sense that such algorithms are better than others)
is open and controversial.

18

1.2 BehaviorSearch

1.2.1 Overview

The BehaviorSearch software was initially developed as part of Forrest Stonedahl 's
doctoral thesis research, with adviser Uri Wilensky at the Center for Connected
Learning and Computer-Based Modeling at Northwestern University. It is an open
source project.

The practice of designing and building new tools is crucial to computer sci-
ence; compilers are an example of a software tool that fundamentally changed the
landscape of computer science. However, many other tools have had substantial
impact on the discipline, and society at large. One example of the success of tool
building is NetLogo platform that BehaviorSearch interfaces with.

In this chapter, we will discuss the characteristics of BehaviorSearch , which is
an open-source cross-platform tool that o�ers several search algorithms and search-
space representations/encodings, and can be used to explore the parameter space
of any Agent Based Model (ABM) written in the NetLogo language.

If you want to show the world a model that displays elephant-trunk-wiggling
behavior, BehaviorSearch can help you �nd parameter settings that will do that.
Does the discovery of such parameters mean you have developed a good model?
Not necessarily. It only means that the behavior you sought exists somewhere in
the parameter space.

BehaviorSearch aims to facilitate model analysis by making search and opti-
mization techniques accessible to all modelers.

1.2.2 What is BehaviorSearch

BehaviorSearch is a software tool to help with automating the exploration of agent-
based models (ABMs), by using genetic algorithms and other heuristic techniques
to search the parameter-space.

BehaviorSearch interfaces with the popular NetLogo ABM development plat-
form, to provide a low-threshold way to search for combinations of model parameter
settings that will result in a speci�ed target behavior.

Model exploration works through four steps:

1. Design a quantitative measure for the behavior you're interested in.

2. Choose parameters to vary and what ranges are allowed.

3. Choose a search algorithm and run it.

4. Examine the results (what parameters most a�ect this behavior?)

19

1.2.3 How it works

According to Stonedahl and Adviser-Wilensky (2011), BehaviorSearch general fea-
tures are:

1. Parameter-type �exibility. BehaviorSearch is capable of searching a com-
bination of numerical (discrete/continuous), boolean, and categorical param-
eters. This is an important feature, since ABM parameters often take various
forms, and are not constrained to always be of uniform type.

2. Search method variety. BehaviorSearch o�ers several di�erent search al-
gorithms and search space representations that users can employ. It has
been designed as a general tool for applying any type of metaheuristic search
algorithm to explore ABM parameter spaces. At present, BehaviorSearch
supports the following search algorithms: random search, stochastic hill
climbing, simulated annealing, and two variants of the genetic algorithm
(generational GA and steady-state GA). This �exibility is important since
di�erent approaches can be more or less e�ective for exploring di�erent mod-
els.

3. Best-checking. BehaviorSearch provides built-in support of best-checking,
to prevent users of the software from being misled by high �tness values
resulting from ABM stochasticity (and so that users can easily detect if the
search algorithm is being misled).

4. Multi-resolution data output. BehaviorSearch can collect and store data
at various levels of detail: recording eachmodel run performed, each �tness
evaluation, each time a new `best` is found, as well as the �nal best param-
eter settings at the end of each search. While novices can e�ectively use
BehaviorSearch by simply looking at the �nal best parameters found, more
advanced users can dig deeper into the search process and the results and
parameters examined along the way.

5. Parametric derivatives. Built-in support for approximating derivatives
of a behavioural objective function with respect to a speci�ed parameter.
This is useful for detecting phase transitions and critical points in the pa-
rameter space.

6. Parallelization and multi-threading support. BehaviorSearch was de-
signed from the ground up with multi-threaded support for parallel searching,
o�ering improved performance for multi-processor / multi-core computers.
As the number of cores in desktop computers proliferates, harnessing this
parallelism becomes a crucial performance issue.

20

7. Extensibility. BehaviorSearch was developed using an extensible object-
oriented framework, allowing new search algorithms and search space repre-
sentations to be easily added.

1.3 BehaviorSearch Tutorial

BehaviorSearch has been released under an open-source license.
The BehaviorSearch tools is also supported by the accompanying project web-

site, located at www.behaviorsearch.org/. This website provides additional
resources, such as a summary of features, information about new releases, links
to relevant papers, and a contact form for user feedback. This site also links to a
Google Code open source project website, with an issue/bug tracker, and access
to the source code.

To deeper explain the characteristics of BehaviorSearch mentioned in the pre-
vious section, I will describe with some examples how BehaviorSearch works on
NetLogo platform.

1.3.1 Installation and Structure

In an e�ort to make the software easy to use, the �rst step is making it easy to
install. Since BehaviorSearch requires BehaviorSearch to perform model runs, it
needs to reside in a sub-folder of the NetLogo installation folder. This can be a
challenge, particularly on variants of the Windows operating system, where users
may have di�culty in

�nding the NetLogo installation folder, and may not have write-access privi-
leges to modify its contents. As a result, there is a graphical executable installer
for Windows to simplify this installation process. (Installation on Mac/Linux com-
puters is also reasonably straightforward, and generally just requires dropping a
folder into the NetLogo application directory).

BehaviorSearch has a modular architecture, that permits changes to one part
of the code without a�ecting others.

At a �ner level of detail, the BehaviorSearch codebase (written in Java) is
divided into eight packages for organizational purposes:

- bsearch.algorithms - contains all of the search algorithms.

- bsearch.app - contains the main code driving the BehaviorSearch application.

- bsearch.evaluation - contains code for handling

�tness evaluation and

�tness caching.

21

- bsearch.nlogolink - handles all of the communication with the NetLogo plat-
form.

- bsearch.representations - contains all of the search space representations.

- bsearch.space - contains a representation of the parameter space.

- bsearch.test - a package that contains unit testing.

- bsearch.util - a package containing miscellaneous utility functions.

A schematic representation of the BehaviorSearch structure can be seen in
Figure 1.1:

Figure 1.1: Design schematic of the BehaviorSearch architecture.

As shown in �gure 1.1, BehaviorSearch contains an extensions API. This API
provides a clean interface for extending its capabilities via new search algorithms
and search space representations, which will help support both continued research
and any special needs of end users of the tool.

22

Figure 1.2: BehaviorSearch Experiment Editor

When you �rst open BehaviorSearch, the window that appears is the Behav-
iorSearch Experiment Editor. BehaviorSearch is centered around the paradigm of
an experiment (or search protocol), which contains all of the information necessary
to specify how the search should be performed on a model.

The BehaviorSearch GUI helps you create, open, modify, and save these exper-
iments (stored as �les with the ".bsearch" extension). The BehaviorSearch engine
is separated from the GUI layer, and does not depend on it.

The BehaviorSearch Experiment Editor is shown in Figure 1.2:

1.3.2 The BehaviorSearch experiment editor

1. First step: load a NetLogo program. In order to start the Behav-
iorSearch analysis on a NetLogo program, �rst of all we have to load such

23

Figure 1.3: Parameter speci�cation

a program clicking the 'Browse for model ' button at the top of the Behav-
iorSearch Experiment Editor

Then we can save our analyses as .bsearch �les and load them clicking '�le'
and then 'open'; this procedure works only if the .nlogo �le is saved in the
same folder of the .bsearch �le.

The 'help' botton contains a direct link to the BehaviorSearch tutorial on
www.behaviorsearch.org.

2. Parameter Speci�cation.The next step is to specify settings, or ranges of
settings, for each of the model's parameters. The easiest way to get started
is to click the 'Load param ranges from model interface' button, which will
automatically extract the parameters/ranges that are included in our model's
interface tab (i.e. SLIDERS, CHOOSERS, and SWITCHES of our NetLogo
program).

The syntax in this case is the following:

24

• ['parameter-name'[parameter-range]]. For example in �gure 1.2
we have the slider with names 'integerparameter': for each kind of
variable like this, the parameter-range is speci�ed as

[starting-point increment ending-point];

for example in the case of 'integerparameter' the vision parameter
ranges from 0 up to 10, by increments of 1 (Those kind of parameter
are allowed to variate during the BehaviorSearch analysis).

• ['parameter-name' parameter-value]. In �gure 1.3 we have the
slider named 'fixedParameter' with this kind of syntax: the value of
the parameter is �xed and does not ranges during the BehaviorSearch
analysis; for example in the case of 'fixedParameter' on �gure 1.3, it
is keep �xed at �fteen.

In BehaviorSearch it is also possible to specify a continuous range for
a parameter, by using "C" for the increment; in this case the syntax
is: ['parameter-name'[sart 'C' stop]]. An example can be shown
in �gure 1.3; the variable continuousParameter ranges from 0.0 to 1.0
with continuous values, speci�ed with the command 'C'.

• ['parameter-name' true false] for Boolean parameters. An exam-
ple is in �gure 1.3: the variable BooleanParameter can be true or
false.

• ['parameter-name' 'choice1' 'choice2'...] for discrete-choice pa-
rameters. Those kind of parameters are a generalization of the Boolean
parameters (we can have multiple situations or conditions that can be
satis�ed).An example of this kind of parameter is given in �gure 1.2,
through the 'choices' 'near' and 'far' of the variable choiceParameter.

The parameters (that are allowed to variate, such as 'integerParameter')
loaded for the BehaviorSearch analysis determine the size of the search space;
this space can be seen as a multidimensional space in which each dimension is
represented by a variable parameter (for example if we have only two variable
parameters the search space can be represented graphically through x and y
cordinates).

To determine the size of the search space we have just to : (1) calculate the
total range of each parameter, it is a number; (2) multiply those numbers.

For example

BehaviorSearch is a useful tool when you have a parameter space that's too
large too enumerate, and you're willing to use heuristic search methods to
try to �nd parameters that yield behavior that you're interested in.

25

Figure 1.4: Measure speci�cation

3. Specifying a measure After the parameter speci�cation, (including their
range), the next step is to de�ne which kind of variable we want to measure,
as a function of such parameters; those information can be given in the six
boxes on the upper-left side of the BehaviorSearch Experiment Editor. The
cells for Specifying a measure are shown with more detail in Figure 1.4.

Looking at �gure 1.4, starting from the top, we have:

• Setup: it refers to the name, in our NetLogo program, of the setup
command (often it is a button called 'setup'). This command is the one
that creates the framework in which the NetLogo program is going to
be implemented/started.

• Step: it identi�es the NetLogo command or commands, that let the
program run (in general in NetLogo, it is called 'go' and it is a procedure
that follows the 'setup' one). If this procedure contains the command
tick, one step corresponds to one tick.

26

• Measure: it is the variable that we want to analyse with Behav-
iorSearch;it is a NetLogo expression, which somehow quanti�es the be-
havior that we are interested in searching for.The measure can consist of
any numeric NetLogo expression, what is important is that the measure
is correlated with the behavior we would like to elicit from the model.

• Measure If : it is a (not compulsory) condition on the previous mea-
sure; only if that condition is satis�ed, the BehaviorSearch analysis can
be implemented (for example it can refer to : another NetLogo variable
included in the 'step'; a true/false condition; a condition controlling on
which steps the measure takes place, i.e. a condition on ticks).

• Stop If : This command works in the same way of 'Measure if', with the
di�erence that it de�nes a stop condition for the model (it is optional).

• Step Limit: On NetLogo, we usually identify procedures with buttons
in the interface; clicking a button, means calling all NetLogo commands
included in such button once. But if we want to let the button work
continuously, we can click on it with the right mouse button, then chose
Edit, and then click on the option forever.

Instead in BehaviorSearch we must specify the number of clicks on the
'go' button (we have not the option 'forever'), writing down the number
of steps of the NetLogo program, that BehaviorSearch will consider, in
its analysis.

4. Search Method Con�guration. This part is not linked to the NetLogo
program; it includes a set of BehaviorSearch options for what concern the
algorithm that will be implemented for the search. Each algorithm owns a
di�erent number of parameters that can be modi�ed(when you select one
kind of algorithm, each window is full �lled with the custom values for those
parameters(�gure 1.5)).

The structure of the search method con�guration can be shown in the graph
of Figure 1.5.

With reference to �gure 1.5, starting from the left side of the graph on the
top, we have a button that permits to chose four kind of search algorithms
for the BehaviorSearch analysis:

StandardGA . (custom): it is the genetic algorithm; its characteristics have been
discussed in section 1; its convergence to an optimal solution has been
guaranteed in by the Holland schema theorem (section 1.3).

The algorithm depends on �ve input parameters.

27

Figure 1.5: Search Method Con�guration

28

• mutation-rate: mutation is a genetic operator used to maintain
genetic diversity from one generation of a population of genetic
algorithm chromosomes to the next. It is analogous to biological
mutation. Mutation alters one or more gene values in a chromosome
from its initial state. In mutation, the solution may change entirely
from the previous solution. Hence GA can come to better solution
by using mutation. Mutation occurs during evolution according to
a user-de�nable mutation probability. This probability should be
set low. If it is set too high, the search will turn into a primitive
random search.

• population-size: the population size depends on the nature of
the problem; traditionally, the initial population is generated ran-
domly, allowing the entire range of possible solutions (the search
space). During each successive generation, a proportion of the ex-
isting population is selected to breed a new generation. In our case
the population-size is the number of individuals allowed in each gen-
eration. The value of population size must be an integer included
in the interval [1, 1000].

• crossover-rate: In genetic algorithms, crossover is a genetic op-
erator used to vary the programming of a chromosome or chromo-
somes from one generation to the next.The word crossover is often
intended as a process of taking more than one parent solutions and
producing a child solution from them. There are di�erent methods
for selection of the chromosomes, in our case the crossover-rate is
the probability of using two parents when creating a child (other-
wise the child is created asexually).

• population-model: 'generational', 'steady-state-replace-random',
or 'steady-state-replace-worst':
'generational' means the whole population is replaced at once;
'steady-state' means that only one single individual is replaced by
reproduction each iteration. The individual being replaced may be
randomly-chosen, or the current worst.

• tournament-size: During each successive generation, a proportion
of the existing population is selected to breed a new generation.
Individual solutions are selected through a �tness-based process,
where �tter solutions (as measured by a �tness function) are typi-
cally more likely to be selected. Certain selection methods rate the
�tness of each solution and preferentially select the best solutions.
Other methods rate only a random sample of the population, as
the former process may be very time-consuming.

29

Tournament selection involves running several 'tournaments' among
a few individuals chosen at random from the population. The win-
ner of each tournament (the one with the best �tness) is selected
for crossover. Selection pressure is easily adjusted by changing the
tournament size. If the tournament size is larger, weak individuals
have a smaller chance to be selected (Usually 2 or 3 is a good
value).

MutationHillClimber :In computer science, hill climbing is a mathematical optimization tech-
nique which belongs to the family of local search. It is an iterative algo-
rithm that starts with an arbitrary solution to a problem, then attempts
to �nd a better solution by incrementally changing a single element of
the solution.

This algorithm is also de�ned in Holland (1992) as: �One conventional
technique for exploring such a landscape is hill climbing: start at some
random point, and if a slight modi�cation improves the quality of your
solution, continue in that direction; otherwise, go in the opposite di-
rection. Complex problems, however, make landscapes with many high
points. As the number of dimensions of the problem space increases,
the countryside may contain tunnels, bridges and even more convoluted
topological features. Finding the right hill or even determining which
way is up becomes increasingly di�cult. �

It depends on the following parameters:

• mutation-rate: controls the probability of mutation; it works in
the same way of the mutation-rate of genetic algorithms.

• restart-after-stall-count: if the hill climber makes some num-
ber (restart-after-stall-count) of unsuccessful attempts to move to
a random neighbor, it assumes it is trapped at a local optimum
in the space, so it restarts by jumping to a new random location
anywhere in the search space.

Hill climbing is good for �nding a local optimum (a solution that cannot
be improved by considering a neighbouring con�guration) but it is not
guaranteed to �nd the best possible solution (the global optimum) out
of all possible solutions (the search space).

SimulatedAnnealing : is a generic probabilistic metaheuristic for the global optimization
problem of locating a good approximation to the global optimum of
a given function in a large search space. It is often used when the
search space is discrete (e.g., all tours that visit a given set of cities).
For certain problems, simulated annealing may be more e�cient than
exhaustive enumeration, provided that the goal is merely to �nd an

30

acceptably good solution in a �xed amount of time, rather than the
best possible solution.

The name and inspiration come from annealing in metallurgy, a tech-
nique involving heating and controlled cooling of a material to increase
the size of its crystals and reduce their defects, both are attributes of
the material that depend on its thermodynamic free energy. Heating
and cooling the material a�ects both the temperature and the ther-
modynamic free energy. While the same amount of cooling brings the
same amount of decrease in temperature it will bring a bigger or smaller
decrease in the thermodynamic free energy depending on the rate that
it occurs, with a slower rate producing a bigger decrease.

This search algorithm is similar to a hill climbing approach, except
that a downhill (inferior) move may also occur, but only with a certain
probability based on the temperature of the system, which decreases
over time.

At each step, the simulated annealing heuristic considers some neigh-
bouring state s' of the current state s, and probabilistically decides
between moving the system to state s' or staying in state s. These
probabilities ultimately lead the system to move to states of lower en-
ergy. Typically this step is repeated until the system reaches a state
that is good enough for the application, or until a given computation
budget has been exhausted.

From a mathematical point of view, the probability of making the tran-
sition from the current state s to a candidate new state s' is speci�ed
by an acceptance probability function P (e, e',T) that depends on the
energies e = E(e) and e

′ = E(e') of the two states, and on a global time-
varying parameter T called the temperature. States with a smaller
energy are better than those with a greater energy. The probability
function P must be positive even when e' is greater than e. This fea-
ture prevents the method from becoming stuck at a local minimum that
is worse than the global one.

In general, in order to apply the simulated annealing to a speci�c prob-
lem, one must specify the following parameters: the state space, the
energy (goal) function E(), the candidate generator procedure neigh-
bour, the acceptance probability function P(), the annealing schedule
temperature and initial temperature. These choices can have a signi�-
cant impact on the method's e�ectiveness. Unfortunately, there are no
choices of these parameters that will be good for all problems, and there
is no general way to �nd the best choices for a given problem.

In BehaviorSearch, simulated annealing depends on four parameters:

31

• mutation-rate: it a�ects how much mutation occurs when choos-
ing a candidate location for moving.

• restart-after-stall-count: if it doesn't manage to move to a
new location after X attempts, reset the temperature, jump to a
random location in the search space and try again. This parameter
represents the number X of attempts.

• initial-temperature: the system's initial 'temperature' (a rea-
sonable choice would be the average expected di�erence in the �t-
ness function's value for two random points in the search space).

• temperature-change-factor: the system's current 'temperature'
is multiplied by this factor (which needs to be less than 1) after
each move. (Using this exponential temperature decay means that
temperature will approach 0 over time. Unfortunately, the optimal
rate for the temperature to decrease varies between problems).It
de�nes the annealing schedule temperature.

The other parameters, i.e. the candidate generator procedure neigh-
bour, the acceptance probability function P(), are �xed, and cannot be
modi�ed in BehaviorSearch analysis.

RandomSearch : it is a family of numerical optimization methods that do not require
the gradient of the problem to be optimized and Random Search can
hence be used on functions that are not continuous or di�erentiable.
Such optimization methods are also known as direct-search, derivative-
free, or black-box methods.

Let f : <n → < be the �tness or cost function which must be minimized.
Let x ∈ <n designate a position or candidate solution in the search-
space. The basic Random Search algorithm can then be described as:

(1).Initialize x with a random position in the search-space.

(2).Repeat the following operation until a termination criterion is met:

- Sample a new position y from the hypersphere of a given radius
surrounding the current position x;

- If (f(y) < f(x)) then move to the new position by setting x = y.

(3). Now x holds the best-found position.

Because of its characteristics and its degree of randomness, the random
search does not have any input parameter on BehaviorSearch Experi-
ment Editor.

Use Fitness Caching : this controls whether the search algorithm memorizes
the result of the objective (�tness) function every time it gets evaluated, so

32

that it doesn't have to recompute it if the search returns to those exact same
parameter settings again.

Since running ABM simulations can be time-consuming (especially when
dealing with large agent populations for many ticks), turning on "�tness
caching" can potentially be a considerable time-saver. However, because
ABMs are usually stochastic, each time a point in the space is re-evaluated,
the search process would get a new independent estimation of the value at
that location.

The last button on the bottom of �gure 2.5, contains four search space en-
codings.

- StandardBinaryChromosome: in this encoding, every parameter is con-
verted into a string of binary digits, and these sequences are concate-
nated together into one large bit array. Mutation and crossover then
occur on a per-bit basis.

- GreyBinaryCromosome: due to the Hamming distance properties of
Gray codes, they are sometimes used in genetic algorithms. They are
very useful in this �eld, since mutations in the code allow for mostly
incremental changes, but occasionally a single bit-change can cause a
big leap and lead to new properties.The Hamming distance between
two strings of equal length is the number of positions at which the
corresponding symbols are di�erent. In another way, it measures the
minimum number of substitutions required to change one string into the
other, or the minimum number of errors that could have transformed
one string into the other.

GreyBinaryChromosome is similar to StandardBinaryChromosome, ex-
cept that numeric values are encoded to binary strings using a Gray
code, instead of the standard "high order" bit ordering. Gray codes
have generally been found to give better performance for search repre-
sentations, since numeric values that are close together are more likely
to be fewer mutations away from each other.

It is a binary numeral system where two successive values di�er in only
one bit. The re�ected binary code was originally designed to prevent
spurious output from electromechanical switches. Today, Gray codes
are widely used to facilitate error correction in digital communications
such as digital terrestrial television and some cable TV systems.

- MixedTypeChromosome: this encoding most closely matches the way
that one commonly thinks of the ABM parameters. Each parameter is
stored separately with its own data type (discrete numeric, continuous

33

numeric, categorical, boolean, etc). Mutation applies to each parameter
separately (e.g. continuous parameters use Gaussian mutation, boolean
parameters get �ipped).

- RealHypercubeChromosome: this encoding exists mainly to facilitate
the (future) use of algorithms that assume a continuous numeric space
,such as Particle Swarm Optimization. particle swarm optimization
(PSO) is a computational method that optimizes a problem by iter-
atively trying to improve a candidate solution with regard to a given
measure of quality. PSO optimizes a problem by having a population of
candidate solutions, here dubbed particles, and moving these particles
around in the search-space according to simple mathematical formulae
over the particle's position and velocity. Each particle's movement is
in�uenced by its local best known position but, is also guided toward
the best known positions in the search-space, which are updated as bet-
ter positions are found by other particles. This is expected to move the
swarm toward the best solutions.

In the RealHypercubeCromosome encoding, every parameter (numeric
or not) is represented by a "real-valued" continuous variable; this rep-
resentation allows them to be applied even when some of the model
parameters are not numeric.

5. Objective / Fitness Function. The �tness function de�nes how the Mea-
sure,i.e. the variable that we want to analyse (explained in point 3), must
converge, in order to meet our work objectives. The convergence is related
to an optimization problem that we want to implement on the search space.

We know how to collect the data(measure speci�cation), but now we need
to turn it into an objective function ("�tness function"). This procedure can
be done completing the table in Figure 1.6.

• Goal: here you specify your objective, i.e maximize or minimize the �tness
function. This �tness function refers to the variable Measure related to
Figure 1.4.

• Collected measure: during one model run, we may have collected the
measure multiple times; you can condense all those values in the follow-
ing ways(the time interval considered for the di�erent measures across steps,
i.e. mean, median, minimum, maximum, variance, sum, is referred to the
command Step Limit ; the starting time for the mean calculation can be

34

Figure 1.6: Objective / Fitness Function

35

expressed in Measure if, specifying the number of ticks; both commands
are referred to Figure 1.4):

- AT_FINAL_STEP: it reports the last measure calculated as �nal result
of the analysis; it is useful if you are only interested in the last measure
that was recorded.

- MEAN_ACROSS_STEPS: it reports the mean of the multiple mea-
sures implemented;

- MEDIAN_ACROSS_STEPS: it reports the median across steps;

- MIN_ACROSS_STEPS: it reports the minimum value measured across
steps ;

- MAX_ACROSS_STEPS: it reports the maximum value measured across
steps;

- VARIANCE_ACROSS_STEPS: it reports the variance of the values
obtained across steps;

- SUM_ACROSS_STEPS: it reports the sum of all values calculated
across steps.

The calculation of di�erent kind of measures across steps refers to those
values, that are obtained during the BehaviorSearch analysis. How start
this analysis, is explained in the next section.

• Fixed sampling: how many times should the model be run? Running the
model once may not give representative results, so you may want to perform
multiple replicate runs (with di�erent initial random seeds), and collect be-
havioral measures from each of them.

Increasing this value will obviously rise the lasting of the BehaviorSearch
analysis.

• Combine replicates: it refers to the Fixed sampling number. If you are
doing multiple replicate runs of the model, you have to combine those results,
in order to get a single number for the chosen objective function. This single
number should incorporate the most useful information given by the multiple
replicates. It can be calculated as:

- MEAN: it is just the simple average of the replicates; it is, in general a
good estimator for a realisation of the sample.

- MEDIAN: may be a better choice if your measure occasionally yields
extremal (too high or too low) outlier values, which you'd like to ignore.

36

- MIN/MAX: that is the opposite of median; you are interested in pa-
rameters that cause extreme behavior; it may mean the lowest(MIN) or
the greatest(MAX) value obtained in the replicates.

- VARIANCE: In probability theory and statistics, variance measures
how far a set of numbers is spread out. A small variance indicates
that the data points tend to be very close to the mean and hence to
each other, while a high variance indicates that the data points are
very spread out from the mean and from each other. Its usefulness
depends on the object of our analysis: choices may be useful for �nding
parameters for which there is volatility in whether the model exhibits
a behavior or not. Such volatility might indicate a phase transition
between two regimes of model behavior.

- STDEV: in statistics and probability theory, the standard deviation
shows how much variation or dispersion from the average exists. A low
standard deviation indicates that the data points tend to be very close
to the mean; a high standard deviation indicates that the data points
are spread out over a large range of values. It is the square root of the
variance;it works in the same way of variance, except that the �tness
function values will be in the same units of the original parameter,
which may be preferable for human interpretation.

• Take derivative?: sometimes you would like to �nd a point in the param-
eter space where the change in your behavioral measure is maximized (or
minimized) with respect to a small change in some parameter. Such places
may indicate a phase transition, critical point, or leverage point. The Take
derivative? option allows you to maximize/minimize the approximate deriva-
tive of your �tness function with respect to a speci�ed parameter(w.r.t.
that stays for 'with respect to') and a speci�ed delta (∆ =, i.e. the change
amount).

If you choose the special value '@MUTATE@' then �nds a neighbouring
point in the search space using mutation from the parameter settings being
evaluated, with the mutation rate speci�ed by delta.

This operation can be considered as a partial derivative of a function of
several variables; it is the derivative with respect to one of those variables,
with the others held constant.

The partial derivative with respect to x1 of a function in <n,i.e. f(x1, x2, ...xn),
can be expressed as: δf

δx1
. In our case the ∆ = is the δx1, where x1 is the

parameter speci�ed in the cell w.r.t.; the value that we want to calculate ,
corresponds to the variation of our �tness function, i.e. δf .

37

• Use ABS value?: if it is checked, then the reported di�erence is always
positive.

• Evaluation limit: it corresponds to the number of model runs; after this
number the BehaviorSearch analysis stops.

• BestChecking replicates: the number of additional replicate model runs
that should be performed to get an unbiased estimate of the true objective
function value, each time the search algorithm �nds a new set of parameters
that it thinks is "better" than any previous set.

The motivation for this is that ABMs are usually stochastic, and when sam-
pling a measure a small/�nite number of times (such as 5, in our example
here), there is likely to still be some "noise" in the objective function. Thus
a search algorithm may appear to be making progress, �nding better and
better parameter settings, when in fact the better results are due to random
noise. Using BestChecking replicates can help you identify when this is the
case.

Also, since new "bests" are found relatively infrequently, you can usually
a�ord to specify a higher number of BestChecking replicates than you can
for normal sampling, yielding more statistically signi�cant reading of the
objective function as the best parameters that the search found.

BestChecking replicates are not counted against the total "model run" limit
for the search. These replicates are extrinsic to the search process, but are
included in the output results to evaluate the search performance, and verify
the objective function values that are obtained.

1.3.3 Run BehavorSearch

After the completion of the BehaviorSearch Experiment Editor, to start the anal-
ysis you have to click on the button Run BehaviorSearch (shown in �gure 1.6
down in the lower right corner of the window); the table that will appear to you
is called Choose experiment running option, and can be seen in Figure 1.7.

Looking at �gure 1.7, we have to complete the following �ve cells.

• Output file system: it should be written here the address where to save
the output data from the search. More in deep, a number of �les will be
created, each starting with this same �le name 'stem'.

38

Figure 1.7: Choose experiment running option

• Number of searches: it represents the number of times the search is re-
peated. A single search may not �nd the best parameter; additional searches
improve con�dence (but it will require additional time to be implemented).

• Starting at search ID: it is a number that identi�es the results of the cur-
rent search(it works as an ID); this number is saved in the Output file system.

• Initial random seed: a random seed (or just seed) is a number (or vector)
used to initialize a pseudo-random number generator. Starting the search
with the same random seed,keeping all the parameters in the BehavorSearch
Experiment Editor unchanged, will always lead to the same results; this is
useful to repeat exately the same searches, or changing the algorithm of
the search, to compare the e�ectiveness of the di�erent searching algorithms
(explained in section 1.3.2 point 4) for a given �tness function.

• Number of threads: this number indicates the number of processors/cores
used for the analysis; for a multi-core/multi processor computer the running
time for the search should be lower. The number of threads does not a�ect
the results obtained, only the time spent.

Brief Output?: BehaviorSearch's default behavior is to create a variety of
output data �les (discussed below), some of which can be quite large (containing
the results of all model runs and all objective function evaluations). With this
option suppresses the creation of the two largest output �les.

39

1.3.4 Examples

Although BehaviorSearch is though as a tool to evolve models, in an ABM frame-
work, it can be also used as a combinatorial search tool.

In fact, ABMs are typically implemented as computer simulations, either as
custom software, or via ABM toolkits, and this software can be then used to
test how changes in individual behaviors will a�ect the system's emerging overall
behavior.

However, to let the reader understand deeply how BehaviorSearch works, I
will proceed by analysing three very simple optimisation problems: I will show
you, with some basic examples, how some NetLogo programs can be analysed by
BehaviorSearch.

All these programs create a framework of simple optimization problems in two
discrete variables. It means that I have the range of x, the range of y, and the
function f(x,y); the objective of the search is to �nd the optimal point of the
function f(x,y).

It means that the whole space can be represented by three dimensions, i.e. x,
y, f(x,y).

An optimization problem with discrete variables is known as a combinatorial
optimization problem. In a combinatorial optimization problem, we are looking
for an object such as an integer, permutation or graph from a �nite (or possibly
countable in�nite) set (to convert the problem into an optimization problem with
continuous variables (in <2) it should be su�cient to change the variable step using
'C'; it is explained in section 1.3.2 point 2).

The name combinatorial search is generally used for algorithms that look for
a speci�c sub-structure of a given discrete structure, such as a graph, a string,
a �nite group, and so on. The term combinatorial optimization is typically used
when the goal is to �nd a sub-structure with a maximum (or minimum) value of
some parameter. (Since the sub-structure is usually represented in the computer
by a set of integer variables with constraints, these problems can be viewed as
special cases of constraint satisfaction or discrete optimization; but they are usually
formulated and solved in a more abstract setting where the internal representation
is not explicitly mentioned.)

The three basic examples, that I will show you in the next section, are named
localH, localH2, localH3.

Note that all the references to loading or search times required for next Behav-
iorSearch analyses (of Section 1.3) , are related to a computer with the following
characteristics:

• Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz 2.50 GHz

40

Figure 1.8: localH.nlogo interface

• RAM 6,00 GB

Case 1

localH.nlogo : the range of x and y coordinates is given through the two sliders xpos

(position of x), and ypos (position of y). The third dimension z (f(x,y)) is
built by the NetLogo program, by reading its values from the base.txt �le.
The NetLogo program looks as follows:

globals [maxH localDiff]

patches-own [height]

41

to setup

__clear-all-and-reset-ticks

file-open "base.txt"

while [not file-at-end?]

[

ask patch file-read file-read

[set height file-read+

set pcolor 90 + height]

]

file-close

crt 1 [set size 1 set color red set shape "circle"]

set maxH 0

ask patches

[if height >= maxH

[set maxH height]

]

end

to go

ask turtle 0

[set xcor xpos

set ycor ypos

set localDiff height - maxH]

end

Most important parts of code:

- The function f(x,y) is created with the values red from the �le, through
the cycle:

while [not file-at-end?]

[

ask patch file-read file-read [set height file-read

42

Figure 1.9: NetLogo table of colors: blue

set pcolor 90 + height]

]

In NetLogo, you can de�ne colors with numbers. Moreover the program
associates di�erent highs, to di�erent colors. The benchmark used in
our case is showed in Figure 1.9.

- The global variable maxH represents the maximum value of f(x,y) calcu-
lated with the commands:

ask patches

[if height >= maxH

[set maxH height]

]

- It is created one agent with the command

crt 1 [set size 1 set color red set shape "circle"].

With the go button, the program moves this agent in the NetLogo world-
space, according to the coordinates speci�ed by the two sliders xpos and
ypos. The related commands are:

ask turtle 0

[set xcor xpos

set ycor ypos

- The variable localDiff reports the di�erence between the maximum
value of f(x,y) and the current position of the agent. (when you click
the button setup the agent position is set equal to the origin (0,0). The
related command is:

set localDiff height - maxH]

The numbers contained in the �le base.txt are created through a sim-
ple Python code, saved in the base.py �le.

43

base.py

import random

f=open("base.txt","w")

for i in range(41):

for j in range(41):

print >>f, i, j, random.random()*10

f.close()

In the code above, f is the variable that contains the command that
opens the �le in writing mode ("w"); the two for cycles are implemented
to build the whole space, that is obtained by creating 41×41 = 1681 ran-
dom numbers with the command random.random()*10 (the command
random.random() returns the next random �oating point number in
the range [0.0 , 1.0)).

localH.bsearch : In our case BehaviorSearch analysis is performed in order to �nd the max-
imum value of f(x,y) previously de�ned. Since we know in advance the value
of the maximum value of the function from the �le base.txt (it is also
evaluated in the NetLogo program, and showed in the interface through a
monitor), I will use as '�tness function' the variable localDiff.

Indeed the BehaviorSearch Experiment Editor completed, is showed in Figure
1.10.

In this analysis the major part of the commands given to the BehaviorSearch
Experiment Editor are default commands that are loaded when you click
Browse for model... for the �rst time; the only exception is represented
by the Parameter speci�cation (remember to always press the button

load param ranges from model inteface to chose the correct variables
for the analysis) and Specifying a measure.

In this example the search space is composed by the two variables xpos and
ypos and its size is 4100× 4100 = 16810000.

The Step limit is set equal to one, because the optimization problem lasts
only one NetLogo tick (it is not a problem that needs to run continuously to
get the solution).

In practice in our case with StandardGA, BehaviorSearch will create an initial
population of random positions in the space, where each position corresponds
to a particular scenario obtained with one press of the button go.

Then the population is evolved 5000 times (i.e. the Evaluation limit)
through the genetic algorithm.

44

Figure 1.10: localH.bsearch

After the completion of the table

Choose experiment running option, the true search can �nally start.
Some results can be seen in Figures 1.11, 1.12; here you can see that the results

change depending on the seed chosen (keeping all other commands �xed).

The main analysis can be seen in the Search Progress table:
here it is possible to view the evolution of the search through a graph where the

x axis represents the number of model runs, and the y axis is the Fitness function.

45

Figure 1.11: Result with initial random seed -448.067.020

46

Figure 1.12: Result with initial random seed 693.127.994

47

Figure 1.13: Partial result

In the rectangle on the right side of the Search Progress table, we have the
values of the parameters loaded in the Parameter Specification table (section
1.3.2 point 2), corresponding to the Fitness value calculated so far.

Moreover consider the BehaviorSearch results ,with reference to Figure 1.13.
We can see:

• Performing search 1 of 1(2 of 2): it is the percentage of completion of
the search (showed through the blue bar). It can be stopped at any time by
clicking the Cancel button.

Note that once stopped, the search cannot be restarted.

Now consider the Figure 1.14; here we have:

48

Figure 1.14: Result with Number of Searches = 2

49

• Finished search 2 of 2: the number 2 of 2 refers to the command given
in the Choose experiment: running options: showed in Figure 1.7.

Improving the number of searches will lead to better results, since in this
case the di�erent searches are not completely independent: each analysis
takes into account the result obtained in the previous one.

In the example of Figure 1.14 the two searches are showed in the Search Progress

table (blue and red line).

Consider that the value of max heigh is 9.999; we expect a Fitness function as
close as possible to zero. Performing a lot of searches with the StandardGA, I can
conclude that the value of the Fitness function lays on average in an interval of
[-0.3 -0.02].

Those results seem to con�rm the convergence of the GA.

Case 2

localH2.nlogo :this program is very similar to the previous one, localH.nlogo; the only thing
that changes is the formation of of the variable heigh: it is no more generated
through a �le, but through the following code.

ask patches

[set height pxcor * 0.12499 + pycor * 0.12499}

set pcolor height + 90]

(pxcor and pycor are 'patch x coordinate', 'patch y coordinates', as in the
previous case localH.nlogo).

With this structure we can manually calculate the variable max heigh, that
is in fact equal to

′max′pxcor × 0.12499 +′ max′pycor × 0.12499 = 9.999

(with 'max' pxcor = 40 = 'max' ycor)

Moreover since the value of heigh is conditioned by the patch coordinates, it
increases smoothly as the coordinates increase, generating the graph showed
in Figure 1.15.

We can say that the function that generates the space of the program localH2
is monotone, although we are considering discrete variables.

(more in deep if we want to obtain graphs as in Figures 1.8 , 1.15, with the
origin centred in the down-left corner, we must click with the right mouse

50

Figure 1.15: localH2.nlogo interface

button on the NetLogo monitor (world) choosing edit and then modify the
command Location of origin, choosing the option corner).

localH2.bsearch : as in localH.bsearch we are looking for a value of the variable localDiff

as close as possible to zero.

The BehaviorSearch Experiment Editor is equal to the one showed in Figure
1.10.

An example of BehaviorSearch result, for localH2, can be seen in Figure
1.16.

51

Figure 1.16: localH2.bsearch result

52

We can note that the StandardGA works signi�cantly better and faster than
in the previous case with localH, although the search space has the same size.
In this case the genetic algorithm often leads to a �tness equal to zero (as in
Figure 1.16).

This because the conformation of the search space(distribution of the dif-
ferent heigh in these examples) strongly in�uences the results of the search,
making the di�erent searching algorithms (section 1.3.2, point 4) more or
less e�ective.

Case 3

localH3.nlogo : this program works as the previous localH.nlogo and localH2.nlogo; as be-
fore, the only di�erence is in the construction of the third dimension (heigh),
that is formed with the following code:

ask patches

[set height pxcor * 0.1 + pycor * 0.1 +

sin (pxcor * 30) + sin (pycor * 30)

if height < 0 [set height 0]

set pcolor height + 90]

In this case we cannot calculate the maximum value of the variable height
as in localH2 . In fact if we consider the max pxcor and the max pycor we
get:

heigh = 40× 0.1 + 40× 0.1 + sin(1200)× 2 = 9.73

that is less than the max heigh. The e�ect of this code on the patch color, in
the NetLogo interface, can be seen in Figure 1.17; here we can also see that
max height is equal to 9.8.

For localH3, the function that characterizes the search space is oscillating;
but it is also smoothed (since we are in discrete time it does not make sense
to de�ne the function 'monotone in intervals' because we are considering
discrete variables).

53

Figure 1.17: localH3.nlogo interface

54

Figure 1.18: localH3.bsearch result

localH3.bsearch : its BehaviorSearch Experiment Editor looks as the one in Figure 1.10.

Performing a lot of analyses with BehaviorSearch we can note that the Stan-
dardGA works better than in localH.bsearch and it is faster (as happened
with localH2.bsearch).

An example of BehaviorSearch result can be seen in Figure 1.18: in this
graph we can also note the value of pxcor and pycor corresponding to the
max height (Fitness = 0), i.e 39.45 and 38.68.

1.3.5 Comparison between search algorithms

In order to explain how BehaviorSearch analysis is in�uenced by the search space
chosen, I will show some comparisons of results with the objective of establish
which algorithm perform the best, and under which conditions.

In this section I will develop the following points:

55

• Analysis of how each search algorithm, (i.e. StandardGA, RandomSearch,
MutationHillClimbing, SimulatedAnnealing), work on the three NetLogo pro-
grams, previously described (i.e. localH, localH2, localH3).

• Modi�cation of the programs, localH, localH2 increasing their search space;
analysis of such new programs called localH1.1, localH2.2, in terms of the
four search algorithms.

• BehaviorSearch analysis of a more complex NetLogo program, Multivariate-
LocalH.

(All the analyses and results showed in this section are based on one-hundred
trials, i.e considering one-hundred di�erent seeds for each case).

Comparison between search algorithms: localH, localH2, localH3

(remember that step limit=1; Evaluation Limit=5000)

StandardGA : custom parameters:

mutation-rate = 0.01

population-size = 50

crossover-rate = 0.7

population-model = generational

tournament-size = 3

• localH : with custom parameters (Search Method Con�guration explained
in section 1.3.2 point 4) the BehaviorSearch analysis lasts 3-4 minutes;
in general the best Fitness is reached within 1000 steps, then until step
5000 it remains substantially unchanged (or it gets little changes); the
average �tness function lies in the interval [-0.3 -0.02], but it is never
zero; when the starting point for the search (randomly chosen by Be-
haviorSearch) has a �tness around -9 or -7, the analysis rarely reaches
a �nal-step �tness bigger than -0.2.

If we change the parameters mutation-rate, crossover-rate,

tournament-size, the analysis does not change signi�cantly, leading in
some case to better results, and in other cases to worse results (di�erent
cases are characterized by a di�erent seed).

A parameter that quite strongly in�uences the analysis is population-size
(see Section 1.3.2 point 4): increasing this value, often leads to better

56

Figure 1.19: localH.bsearch: custom parameter of standardGA (population size
50), and random seed = -1.911.335.195

results, but it also increases the time due for the BehaviorSearch anal-
ysis (population-size must be an integer, and it lays between 1 and
1000).

For example if we set population-size = 200 (instead of 50), the
�tness can now reach the value zero, and it is always less than 0.1.

The di�erent e�ect of population-size on the same search attempt
(seed = -1.911.335.195) can be seen in Figures 1.19, 1.20: in those graph
we can note that with population-size= 50 the Fitness is -0.0722563;
while with population-size= 200 the Fitness is 0.0000000.

Although the di�erence between the two Fitness mentioned above seems
not to be relevant, in fact those values are related to very distant points
in the three-dimensional search space considered:

xpos=7.30000 ypos=17.73000 for Figure 1.19;

xpos=37.3900 ypos=32.3700 for Figure 1.20.

57

Figure 1.20: localH.bsearch: custom parameter of standardGA except population
size=200; random seed = -1.911.335.195

58

Another parameter of the StandardGA that substantially changes the
results of the BehaviorSearch analysis, is the population-model pa-
rameter (Section 1.3.2 point 4).

All examples and Figures mentioned until now, are referred to the cus-
tom population-model, i.e. generational.

Other models can be selected by changing the related cell; those are
steady-state-replace-worst, and steady-state-replace-random.

The steady-state-replace-worst model always leads to better re-
sults providing a Fitness closer to zero; this model combined with a quite
high value of the parameter population-size provides the best Fitness
for localH, considering all the search algorithms of BehaviorSearch.

After the implementation of one hundred searches (with population-

size=200), the average Fitness is about -0.013, and the analysis reached
a mean of three zero Fitness out of ten attempts.

On average, also the steady-state-replace-random model works bet-
ter than the generational one; but this model, sometimes shows a
quite low �tness (around -0.2), due to the possibility, during the imple-
mentation of the Genetic algorithm, that one good solution is replaced.
This e�ect is evident because the search space is quite small, and a
wrong replacement can quite strongly in�uence the �nal Fitness value.

• localH2 : for this optimization program the situation is di�erent: the
BehaviorSearch analysis is now faster than in localH case, and it lasts
only 2-3 seconds.

With custom StandardGA parameters: the major part of the attempts
reach a zero Fitness value, while on average one search out of ten gets
a Fitness value around -0.2.

The e�ect of changing the population-size parameter is now less rel-
evant: if we want to obtain a better Fitness by increasing the

population-size we have also to increase the Evaluation Limit value
(note that increasing these two parameters, the time due for the analysis
strongly increases: for example setting population-size=1000 and
Evaluation Limit=50000, we always get a zero Fitness, but the search
lasts 15-16 seconds).

Also the e�ect of choosing a di�erent population-model is less re-
markable: the frequency of Fitnesses di�erent from zero is a little bit
higher when using steady-state-replace-random model(on average

59

two-three out of ten trials); while there are no signi�cant di�erences (in
results) when using the other two models.

Remember that localH2 forms a monotone three-dimensional surface as
shown in Figure 1.15; in that case the variable heigh gradually changes
its value: it means that similar values of �nal Fitness correspond to
quite close points in the space.

The other parameters that characterize the StandardGA react as in
localH.

• localH3 : for this program, the BehaviorSearch results are very similar
to the previous case, i.e. localH2 :

the analysis with custom StandardGA parameters requires only few sec-
onds (3-4); the results show an often equal to zero Fitness (only one case
over ten attempts gets a �nal Fitness within the interval [-0.25 , -0.12]).

The e�ect of population-size is in�uenced by the Evaluation Limit(as
happened with localH2): a small value of the �rst compared to the
second, ensures the evolution of all members forming the initial popu-
lation, for several steps; if the algorithm is repeated for several steps,
the probability of convergence to the search objective increases (note
that for initial population I refer to the part of the total population
that is randomly chosen to evolve: in fact in BehaviorSearch it is the
population-size).

However starting from a big initial population provides a greater level of
heterogeneity, that is fundamental for the well functioning of a Genetic
Algorithm.

It means that, keeping �xed the Evaluation Limit, extreme positions
of population-size do not work well:

for example if we set population-size=10 (with Evaluation Limit=5000),
we have a small fraction 10/5000, and so a good convergence probabil-
ity; but we have a small initial population (10 realisations) that does
not enhance heterogeneity.

The opposite situation happens if we set an initial population of 1000
(maximum possible value for population-size parameter); we now
have the maximum value heterogeneity (note that I can set

population-size=1000 because I have a search space of 400 × 400 =
160000 possible solution, and 1000 < 160000);

but the fraction 1000/5000 is quite small, and this value ensures few
evolution steps from one generation to the other, and so a lower con-
vergence probability.

60

As in localH2 the e�ect of little changes in the other parameters char-
acterizing the StandardGA is negligible.

RandomSearch : (no imput parameters)

• localH : with Evaluation Limit= 5000 model runs, the BehaviorSearch
analysis lasts 3-4 minutes.

The Fitness is always included in the interval [-0.04 , 0], and on average
reaches the value zero three times out of ten attempts.

The results obtained in terms of Fitness, are very similar to those
showed using StandardGA with population-size= 200 and

population-model= steady-state-replace-worst.

• localH2 : the BehaviorSearch analysis lasts only two seconds; the algo-
rithm performs badly compared to the StandardGA: the Fitness rarely
gets a zero value,(on average one time out of �fteen attempts) and it is
generally included in the interval [-0.6 , -0.12].

• localH3 : the search produces Fitness result with an high variance (with
respect to the other cases considered); the solutions lie in the interval
[-0.7 , 0] , and on average they reach a zero Fitness one time out of
three attempts.

The time spent for the analysis is about four seconds.

MutationHillClimber : (custom parameters:

mutation rate= 0.005

restart-after-stall-count=0)

• localH : with custom parameters, the search is less e�cient than with
RandomSearch algorithm; this is probaly due to the random structure
of the search space. The analysis lasts 3-4 minutes as in previous cases;
the Fitness lies in the interval [-0.15 , 0], but rarely reaches the value
zero (on average one time out of ten attempts).

If we increase the mutation-rate the algorithm approaches the behav-
ior of the RandomSearch, leading to slightly better results.

The same e�ect can be obtained if we increase the value of restart-after

61

-stall-count; in fact this parameter strongly in�uence the degree of
randomness of the algorithm.

(Note that the value of these two parameter in�uences the search result
in a non proportional way: I have been empirically chosen as benchmark
a framework with mutation-rate= 0.2 and restart-after-stall-count

= 3; if we increase these values, increasing the degree of randomness of
the algorithm, this not always leads to better results;).

Some examples of Fitness given by the MutationHillClimber algorithm,
varying its parameters, can be seen in Figures 1.21, 1.22, 1.23 (they are
characterized by the same random seed).

Sometimes a combination of mutation-rate and restart-after-stall-

count can provide an even better Fitness, as shown in Figure 1.24 ,
but there is not a general rule; however implementing several Behav-
iorSearch trials (analysing several seeds) can be obtained an empirical
rule, that properly works only on the program that we are testing.

• localH2 : the characteristics of Hill Climber algorithm �t particularly
well on search space considered: in fact it is always possible to �nd a
greater heigh implementing slight modi�cations (once the right direc-
tion has been chosen, the convergence is ensured).

More in detail, the analysis lasts three seconds, and gets always a zero
Fitness, except in sporadic cases (one case out of twenty attempts, on
average), in which Fitness = -0.2 .

As explained in localH, the e�ect of increasing the two parameters char-
acterizing the MutationHillClimber, rises the degree of randomness of
the algorithm.

Moreover, since the RandomSearch algorithm works particularly bad on
localH2, the e�ect produced by mutation-rate and restart-after-

stall-count works in the opposite way as that explained for localH :
for higher values of those parameters we get a lower Fitness (close to
the one computed in the RandomSearch case of localH2).

62

Figure 1.21: MutationHillClimber forlocalH : result with custom parameters and
seed= 1.135.198.364
.

63

Figure 1.22: MutationHillClimber forlocalH : result with custom parameters except
mutation-rate= 0.2 and seed= 1.135.198.364
.

64

Figure 1.23: MutationHillClimber forlocalH : result with custom parameters except
restart-after-stall-count= 3 and seed= 1.135.198.364
.

65

Figure 1.24: MutationHillClimber forlocalH : result with mutation-rate= 0.2 ,
restart-after-stall-count= 3 and seed= 1.135.198.364
.

66

Figure 1.25: MutationHillClimber forlocalH3 : very fast convergence to zero Fitness
value
.

• localH3 : the BehaviorSearch analysis lasts �ve-six seconds; with custom
parameters the Fitness value is always zero, except in sporadic trials
(on average one out of �fty attempts, with Fitness equal to about -
0.2); moreover the convergence to zero is very fast, and it is generally
obtained within 2000 steps(model runs): an example of this can be seen
in Figure 1.25.

For what concerns the other parameters characterizing the algorithm,
they behaves as for localH2.

SimulatedAnnealing (custom parameters:

mutation-rate= 0.05

temperature-change-factor= 0.99

initial-temperature= 1.0

67

restart-after-stall-count= 0)

• localH : with custom parameters the algorithm gives solutions included
in the interval [-0.1 -0.01], and the Fitness never gets the value zero. In
this case the search analysis is less e�ective than the one implemented
with the RandomSearch, and results have a smaller variance than in the
case with the MutationHillClimber algorithm.

If we increase the parameters mutation-rate and

restart-after-stall-count the search becomes more random as hap-
pened withMutationHillClimber algorithm, leading on average to slightly
better results.

The other parameters, i.e. temperature-change-factor and

initial-temperature are linked to the search space de�ned, and there
is not a general rule for their e�ectiveness. I have found that for this
speci�c problem, temperature-change-factor leads to opposite re-
sults, so I cannot de�ne a range of possible values; for what concerns
initial-temperature, I have found that a reasonable value for localH
is around 8.0: in this framework, keeping all other parameters with
custom settings, the algorithm can reach a Fitness equal to zero.

As happened with the MutationHillClimber algorithm, a combination
of di�erent parameters value, can provide a faster convergence to zero,
but there is not a general rule.

• localH2 : the algorithm, with custom parameters, is very e�cient for
this program, providing the same results of the MutationHillClimber
case; the Fitness is often zero, while on average only one trial out of
twenty gives a convergence to -0.15, or -0.25 .

The e�ect of changing parameters provides worse results if we increase
the value of mutation-rate and restart-after-stall-count, since
they rise the level of randomness of the program, and as explained
before, the RandomSearch algorithm performs poorly on localH2.

The missing parameters, i.e. temperature-change-factor and

initial-temperature do not change remarkably the search; in some
cases, a higher or a lower value of these parameters can lead only to a
faster convergence to a zero Fitness.

• localH3 : to implement the 5000 model runs, BehaviorSearch requires
eight seconds.

68

If we consider the model with custom parameters, it gives results very
similar to those obtained applying MutationHillClimber algorithm to
localH3.

While if we change the parameters characterizing the algorithm, we sort
the same e�ects as in localH2 applying SimulatedAnnealing ; in fact the
two programs localH2 and localH3 have in common the fact that they
create a smoothed three-dimensional surface, that is not completely
random as in localH case.

Comparison between search algorithms: localH1.1, localH2.2

Until now we discussed about the e�ectiveness of the di�erent BehaviorSearch algo-
rithms, only as a function of their input parameters (Search Method Configuration

table); but we haven't yet analysed the e�ect on BehaviorSerch of increasing the
search space.

In fact all the programs localH localH2, localH3 own a search space equal to
range of x times range of y , i.e.

41

0.01
× 41

0.01
= 41002 = 16810000

But in practice, considering how the programs are built through NetLogo, we have
only

41× 41 = 1681

changes of the variable heigh.
The objective of the analyses of this section, is to study the response of Be-

haviorSearch with respect to changes in the magnitude of the search space: for
this purpose, I have modi�ed the programs localH and localH2 ; the new programs
updated are called localH1.1 and localH2.2.

I have not built a new version of localH3, because it gives results very similar
to localH2 ; my impression is that the BehaviorSearch analysis performs likewise
for monotonic functions, or at least monotonic at large increments.

For the BehaviorSearch analyses of localH1.1 and localH2.2, I will consider
the same conditions previously set in the preceding analyses: in terms of the
parameters characterising each search algorithm, and in terms of BehaviorSearch
Experiment Editor (remember Step Limit = 1 , Evaluation Limit = 5000 model
runs).

localH1.1 : the NetLogo program maintains the same structure of its predecessor (see
section 1.3.4 case 1); the only part that changes is the formation of the three
dimensional space, through the Python program.

69

As in localH,each value of the variable heigh, that characterise the function
f(x,y) is saved into a text �le; for localH1.1 it is called base_mod.txt.

The Python program, called base_mod.py, creates that �le in the following
way:

import random

f=open("base_mod.txt","w")

for i in range(81):

for j in range(81):

print >>f, i, j, random.random()*10

f.close()

With respect to its predecessor, i.e. base.py (explained in section 3.4.1),
this one builds 81 × 81 = 6561 points for the variable heigh, instead of
41× 41 = 1681.

More in deep, the only di�erence is in each for cycle, that ranges from 1 to
81, doubling the range of the x and y coordinates.

Instead, the dimension of the search space is:

81

0.01
× 411

0.01
= 81002 = 65610000 (1.1)

since the step for the variables xpos and ypos is 0.01 .

The surface obtained with localH1.1.nlogo,(after have pressed the setup but-
ton) is shown in Figure 1.26.

localH1.1.bsearch:

� StandardGA: BehaviorSearch takes slightly more than one minute (about
70 seconds on average) to start the search, i.e. to run the analysis (load-
ing time); then the proper analysis lasts about 11.30 - 13.30 minutes.

We can note that comparing localH1.1 with localH, we have a search
space of 65610000 instead of 16810000: the �rst is about 3.9 times
greater than the second;

70

Figure 1.26: localH1.1 interface
.

71

65610000

16810000
= 3.903033908

(note that a loading time necessary to start the analysis, greater than
few seconds, is present only in the StandardGA case with high values
of population-size).

Also the time due to complete the search and get the one-hundred
percent of completion, is about four times greater than in localH case
(see section 1.3.5 case 1).

The genetic algorithm, with custom parameters provides a Fitness on
average slightly more than - 0.05 (- 0.048 on 100 trials) ; moreover it is
never zero, and rarely lower than than -0.1 .

The �tness obtained is greater than the one observed for localH : it
seems that with the StandardGA, a larger search space size leads to
better results in terms of convergence to the optimal point.

If now we set population-size = 200, the BehaviorSearch loading
time, to start the analysis lasts more than four minutes; my impression
is that, this waiting time is proportional to the population size consid-
ered, since that value in�uences the de�nition of the portion of initial
population, randomly selected to evolve by the algorithm: a greater
population-size requires more computations.

However,although this di�erence for the starting time, the duration of
the proper analysis does not change signi�cantly (the BehaviorSearch
time spent for the analysis is proportional to the Evaluation Limit,
and depends on the structure of the search space).

As for localH, the Fitness is closer to zero, and can reach in some trials
exactly the value zero (on average it is equal to about - 0.02).

The e�ect of changing the population-model, are the opposite with
respect to those observe so far (Section 1.3.5 case 1): if we set the

steady-state-replace-worst framework, it gives always worse results
in terms of Fitness (there are no strong di�erences with the generational
case, but on average each trial di�er of about -0.005). This e�ect is
probably due to the elimination of the worst realisation during the Be-
haviorSearch analysis, causing a reduction in the degree of heterogeneity
of the search algorithm.

Moreover we can note that the StandardGA is more sensitive to hetero-
geneity when we are considering a greater search space size.

72

The steady-state-replace-randommodel does not provide signi�cant
changes with respect to the custom case, reaching on average the same
Fitness.

The other parameters characterising the StandardGA, i.e. mutation-rate,
crossover-rate and tournament-size, are not relevant in the the
search analysis, since a change of those variables produces sometimes
slightly better or slightly worse results, without a identi�able pattern
(as happened for localH in Section 1.3.5 case 1).

If we want to obtain the best results in terms of Fitness, getting always
zero, we must set: population-size = 1000, (Search Method Con�gu-
ration) to enhance heterogeneity , and Evaluation Limit equal to at
least 20000 (Objective/Fitness Function), to ensure enough evolution
steps. This structure is quite burdensome, with respect to the custom
framework: the initial loading time is about twenty times greater, while
the time for the search analysis is about 20000

5000
= 4 times greater.

� RandomSearch: (no input parameter in the Search Method Con�gura-
tion) after 5000 model runs it attains an average �tness of about -0.02
(the �tness is always greater than -0.1, but it is rarely 0, one trial out
of thirty attempts).

Surprisingly the RandomSearch suits well for this program: increas-
ing the search space, the random space generated by localH is more
e�ciently analysed by the algorithm.

This can be explained as a consequence of the fact that the space
points randomly generated through the Python program base.py are
not enough di�erentiated: it means that the command random.random()*10
does not ensures the formation of a maximum point signi�cantly higher
than the other space points; in facts there are a lot of points with heigh

close to 9.9 .

For that reason the Function characterising the localH1.1 space, turn
out to be more similar to the one characterising localH2, and so more
smoothed.

The time necessary to complete the analysis is 13 - 14 minutes.

� MutationHillClimber : the e�ect of changing the parameters of the al-
gorithm is the same explained in section 1.3.5 case 1 .

With custom parameters the Fitness lies in the interval [-0.2 , -0.004]
with mean of about -0.06; it never reached the value zero.

73

As for localH, the algorithm works worse than the RandomSearch, al-
though the surface considered is more smoothed that the one of its
predecessor .

� SimulatedAnnealing : this algorithm gets the same results of the Muta-
tionHillClimber one; the average �tness is about -0.06, and the analysis
lasts 13 - 14 minutes.

The e�ect of changing the parameters of the algorithm, for localH1.1 is
equivalent to that observed in section 1.3.5 .

localH2.2 : in this case, the changes with respect to localH2 (see section 1.3.4 case 2)
comes from a di�erent core structure of the NetLogo program; the related
part of code is:

ask patches [set height pxcor * 0.02 + pycor * 0.02

set pcolor height + 80

]

These updates are implemented to obtain the graph in Figure 1.27.

We can note that now the variables xpos and ypos range from 0 to 250; it
means that the NetLogo program localH2.2.nlogo creates 251×251 = 63001 points
for the third dimension heigh, while the size of the search space is:

251

0.01
× 251

0.01
= 251002 = 630010000 (1.2)

since the step is 0.01 .

LocalH2.2.bsearch The dimension of the search space is big with respect to
the range of the variable heigh (the range is represented by the interval [0
10]): this fact together with the structure of the search space ensures a very
smoothed surface: as we have seen in previous cases, this characteristic should
favour StandardGA, MutationHillClimber, SimulatedAnnealing algorithms; while
it should work badly with RandomSearch algorithm.

74

Figure 1.27: localH2.2 interface
.

75

- StandardGA: the BehaviorSearch analysis lasts about two-three minutes.

With custom parameters the �tness gets always the value zero within the
step 500 (out of 5000 model runs);

the StandardGA works well on localH2.2 with any value of population-size

. This parameter a�ects only the time due to get a zero �tness: a smaller
value ensures a faster convergence, and vice-versa.

This e�ect is probably due to the fact that if the surface considered is very
smoothed, the genetic algorithm requires less heterogeneity to converge, and
the number of evolutionary steps becomes more relevant than the magnitude
of population-size (given by the ratio

population-size / Evaluation Limit).

Empirically the best population size lies between 15 and 20 individuals : the
zero �tness value is reached, on average within the step 300.

The model steady-state-replace-worst produces on average, a slightly
faster convergence , with respect to generational and steady-state-replace-random
models; but this di�erence seems not signi�cant.

Changing the parameters crossover-rate and tournament-size does not
give rise to evident changes in the search, while increasing the value of
mutation-rate slows the convergence to zero of the algorithm; this hap-
pens because a greater value of mutation-rate alters the genetic algorithm
in a random search.

- RandomSearch (no input parameters): the analysis lasts about two minutes.

The algorithm rarely reaches a zero �tness value (one case out of �fty trials):
after 5000 model runs the �tness �lls always in the interval [-0.2 0].

It is the worst search algorithm for localH2.2.

- MutationHillClimber : BehaviorSearch lasts about four minutes to implement
5000 model runs with this algorithm.

The �tness gets always the value zero within the �rst 300 steps.

The algorithm, with custom input parameters, performs well on localH2.2,
as happened with the StandardGA; the only di�erence consists in a little
longer time needed to complete the search.

As explained in previous section, the input parameters characterising the
algorithm in�uence the randomness degree of the search: if we increase the
value of mutation-rate and restart-after-

76

stall-count, the algorithm behavior approaches the random search, leading
to worse results.

However the e�ect of the �rst is stronger than the e�ect of the latter (for
example, if we set mutation-rate = 0.8 , the �tness lies in the interval
[-0.5 , -0.05]; while if we set restart-after-stall-count = 5, the �tness
limits are [-0.08 , -0.02]).

- SimulatedAnnealing : the search analysis lasts about three-four minutes to
complete the 5000 model runs.

The algorithm, with custom input parameters, gets always a zero �tness
within the step 1000: for localH2.2 it works as the MutationHillClimber
algorithm , with the only di�erence that it has a slower convergence.

The parameters mutation-rate and restart-after-stall-count, sort
the same results explained for the MutationHillClimber algorithm: they in-
crease the degree of randomness of the search, providing a worse average
�tness.

The e�ect of changing the parameter initial-temperature seems not too
signi�cant, although empirically with higher values of the parameter, the
convergence is a little slower.

For the parameter temperature-change-factor the convergence seems to
be faster for values included in the interval [0.3 , 0.7].

Comparison between search algorithms: MultivariateLocalH

In order to continue the study on the e�ectiveness of BehaviorSearch algorithms,
obtained by enlarging the search space, I have built a new program, i.e. Multi-
variateLocalH.

- MultivariateLocalH.nlogo: this program is focused on the creation of a six-
dimensional space, with variables x1, x2, x3, x4, x5, x6.

Obviously such kind of search space cannot be represented graphically; for
that reason my idea is to create a n-sphere, with n = 6, because it is quite
simple to understand and to �nd critical points.

In mathematics, an n-sphere is a generalization of the surface of an ordinary
sphere to a n-dimensional space. For any natural number n, an n-sphere
of radius r is de�ned as the set of points in (n + 1)-dimensional Euclidean
space which are at distance r from a central point, where the radius r may be

77

any positive real number. Spheres of dimension n > 2 are sometimes called
hyperspheres.

The set of points in (n + 1)-space: (x1,x2,...,xn+1) that de�ne an n-sphere,
(Sn) is represented by the equation:

r2 =
n+1∑
i=1

(xi − ci)2

where c is a center point, and r is the radius.

The NetLogo code that generates our 6-sphere is the following:

globals [maxH localDiff Y]

turtles-own [point]

to setup

__clear-all-and-reset-ticks

crt 1 [set shape "person"]

end

to go

ask turtles[

set Y (x1 ^ 2 + x2 ^ 2 + x3 ^ 2 + x4 ^ 2

+ x5 ^ 2 + x6 ^ 2 + 10)

set point Y

show point

]

set localDiff Y - 60010

end

The range of the six variables mentioned is: [0 , 100] with increment 0.01 for
x1, x2, x3, x4, x5 ; [-100 , 100] with increment 0.01 for x6 .

The range of each variable is set up with the respective slider, as shown in
Figure 1.28 .

78

Figure 1.28: MultivariateLocalH interface after the implementation of the setup
procedure.

79

The construction of the hypersphere is obtained through the equation

set Y (x1 ^ 2 + x2 ^ 2 + x3 ^ 2 + x4 ^ 2 + x5 ^ 2 + x6 ^ 2 + 10)

that puts inside the variable Y every possible space point (note that all calcu-
lations are computed through the ask command, that requires the creation
of at least one agent; this is done in the setup procedure with the command
crt 1 [set shape "person"]).

Although we are considering a multidimensional space, it is easy to calculate
its critical points; in facts the maximum can be reached in two possible points
in the search space :

(x1 = x2 = x3 = x4 = x5 = x6 = 100) and

(x1 = x2 = x3 = x4 = x5 = 100 , x6 = -100)

since a hypersphere maintains the same characteristics of a sphere.

As in the previous programs analysed, (localH, etc...) the variable localDiff
measures the distance between the current point, obtained with the related
value of the sliders, and the maximum value of the function.

We can see this fact from the command:

set localDiff Y - 60010

where 60010 can be calculated substituting the optimal points into the hy-
persphere equation:

1002 + 1002 + 1002 + 1002 + 1002 + (+−100)2 + 10 = 60010

We can see the value of localDiff in the homonym monitor in the NetLogo
interface, by pressing the go button (see Figure 1.28).

The dimension of the search space is the biggest analysed so far: it is equal
to:

100

0.01
+

100

0.01
+

100

0.01
+

100

0.01
+

100

0.01
+

200

0.01
= 2× 1024

The multidimensional space so created is smoothed and monotone.

- MultivariateLocalH.bsearch : as happened with previous programs, the Be-
haviorSearch analyses are implemented using the variable localDiff as �t-
ness: with this framework the best obtainable �tness is equal to zero.

80

Figure 1.29: MultivariateLocalH.bsearch: parameter speci�cation and identi�ca-
tion of the �tness function.

The number of total model runs, i.e. the Evaluation Limit, is set equal to
5000, as in previous analyses.

• StandardGA: the time due to complete the BehaviorSearch analysis is
only 3-4 seconds.

With custom parameters the average �tness is about -5000 (it never
reaches the value zero): although the search is fast, it seems that 5000
model runs are not enough to obtain a �tness close to zero.

The parameter mutation-rate works in the same way for all algorithms
of BehaviorSearch; in this case, if we increase the degree of randomness
of the algorithm, we get worse results in terms of �tness.

As in previous examples, the e�ect of the parameters crossover-rate
and tournament-size on the search are not well de�ned; a change in
those values can lead to opposite results depending on the trial consid-
ered (seed).

For what concern the population-model :

the steady-state-replace-worst model is more e�cient than the
generational one, providing an average �tness of about -3000;

the steady-state-replace-random model is less e�cient than the
generational one, getting a �nal average �tness of about -6000.

The input parameter that the most in�uences the search is population-size
: if we increase this value, we get a lower �nal �tness and vice-versa;
this happens because we are considering a smoothed multidimensional
space, and it is more preferable to increase the number of evolutionary
steps, instead of the degree of heterogeneity of the population selected
to evolve (keeping �xed the evaluation limit).

81

For example if we set the Search Method Con�guration with custom
parameters, except population-size= 10, we obtain an average �tness
of about -2000 (however note that the degree of heterogeneity cannot
be too small: for population sizes smaller than 10, the results become
worse).

The best �tness for MultivariateLocalH can be reached by setting:

population-size= 10

population-model= steady-state-replace-worst

In this framework the average �tness is about -1000 (it lies in the in-
terval[-5000 , -200]).

• RandomSearch: with this algorithm the analysis lasts 3 seconds.

The search is very ine�cient with this search algorithm : the average
�tness is about -16000 (it is the worst �tness, compared to the results
of any other BehaviorSearch algorithm).

These are not surprising results: the reliability of a random algorithm
is inversely proportional to the search space magnitude.

• MutationHillClimber : the analysis requires 3 seconds.

The average �tness, using custom input parameters, is about -1500,
with a small variance: in fact the range of �tness values is included in
the interval [-2000 , -500].

As we have seen for localH2, localH2.2 and localH3, the MutationHill-
Climber algorithms works well on smoothed (and monotone) functions.

In general the e�ciency of the algorithm, in terms of �tness is inversely
proportional to the magnitude of mutation-rate, and

restart-after-stall-count : as observed for smoothed functions
(localH2, localH2.2) the if we increase these parameters, Mutation-
HillClimber becomes similar to the RandomSearch, working badly on
smoothed functions.

• SimulatedAnnealing : the analysis can be completed in 3-4 seconds.

The �tness function localDiff reaches values in the interval [-4000
-200], if we consider the custom parameters of the algorithm.

While if we change the values of these input parameters:

we get the same e�ect explained for MutationHillClimber, if we modify
mutation-rate and restart-after-stall-count ;

82

the parameters initial-temperature and temperature-change-factor
do not modify the average �tness.

1.3.6 Technical achievements

What mainly emerge from my analyses is :

1. if we rise the value of the input parameters mutation-rate,

restart-after-stall-count, (for any algorithm that owns these parame-
ters) we increase the degree of randomness of the search (the search algorithm
considered becomes similar to a RandomSearch);

2. StandardGA: it is the more �exible algorithm of BehaviorSearch. With the
right combination of input parameters it provides a faster convergence to
the optimal solution; however it can be di�cult to �nd such combination of
input parameters, since it depends on the conformation of the search space
considered, that is not always note.

The two parameters that a�ect the most, the e�ectiveness of the StandardGA
are:

(a) population-size : if we increase this value, we get a higher level
of heterogeneity of the sample that is randomly chosen to evolve; this
should ensure a greater probability of convergence to the optimal �tness.
But the value of population-size should be considered together with
the value of Evaluation Limit, i.e. the number of model runs: in fact
a small value of the �rst with respect to the last, enlarges the number
of evolutionary steps, providing a faster convergence.

If we are analysing a search space that is smoothed, it is better to
set a low value of population-size, since the degree of heterogeneity
becomes not too relevant, while the number of evolutionary steps should
be high; and vice-versa.

(b) population-model : the e�ectiveness of this parameter is connected
mainly to the magnitude of the search space; if we consider a quite
small search space (as in localH, localH2, localH3) the model

steady-state-replace-worst seems to work better than the others;
but if we enlarge the search space the model generational becomes the
most e�ective, while the model steady-state-replace-worst results
the least e�ective.

83

One possible explanation of this e�ect can be given by considering the
fact that if we replace one solution, we can decrease the degree of het-
erogeneity of the population.

The distinction between population models is less signi�cant if we con-
sider smoothed search spaces.

3. The RandomSearch algorithm is e�cient only for small search spaces (as
happened for localH, localH2, localH3 cases).

4. The algorithms MutationHillClimber and SimulatedAnnealing provide a fast
convergence only if the search space is smoothed.

Further considerations can be done by analysing in deep the
Search Encoding Representation.

84

Chapter 2

Stock exchange simulation and

search of the optimal agents

behavior

2.1 User manual

This section contains the description of the behaviour of the agents interested in
the simulation, through the explanation of the most interesting parts of the code.

2.1.1 g1 _ CDA _ basic _ model

My work in NetLogo starts from the program g1 _CDA _basic _model.
This program creates a variable number of agents (according to the slider nRan-

domAgents) and displays them orderly.
Each agent has an equal probabilty of being a buyer or a seller, moreover, there

is a probability to pass: it is chosen using a slider called pass-level.
The NetLogo code related to the de�nition of the trading decisions is:

ifelse out-of-market [set color white]

[ifelse random-float 1 < passLevel [set pass True][set pass False]

ifelse not pass

[ifelse random-float 1 < 0.5

[set buy True set sell False]

[set sell True set buy False]]

[set buy False set sell False]

if pass [set color gray]

if buy [set color red]

if sell [set color green]

85

;set price 501 + random 999

;set price random-normal 1000 100

set price exePrice + (random-normal 0 100)

Next, the agent is given a di�erent random price (speci�cally, it is composed
by a �xed part plus a random part). The series of di�erent prices is ordered in a
vector. From that vector are created two di�erent vectors with agents prices, logS
for sellers and logB for buyers. logS is sorted (set in increasing order for sellers)
while logB is reverse sorted (set in decreasing order for buyers). Then the �rst
elements of the two vectors are compared: if the buying price is greater than the
selling price, two market prices are created: the ask price is the one held by the
agent buyer (agB), while the bid price is the one held by the agent seller (agS).

That procedure is repeated continuously, eliminating the �rst element of both
vectors of prices (logB and logS) once they generated a bid and an ask price;
in this way it is always taken a di�erent price as market price, resulting in the
formation of bid and ask prices through an auction mechanism.

The most interesting part of the NetLogo program, for the price formation is
the following:

ask randomAgents

[if not pass and not out-of-market

[

let tmp[]

set tmp lput price tmp

set tmp lput who tmp

if buy [set logB lput tmp logB]

set logB reverse sort-by [item 0 ?1 < item 0 ?2] logB

;show logB

if sell [set logS lput tmp logS]

set logS sort-by [item 0 ?1 < item 0 ?2] logS

;show logS

Where tmp is a temporary vector that contains all agents prices; each price is
inserted in the vector through the NetLogo command lput, that stays for `last
put`(the command puts the price inside the vector as last element, increasing the
vector length by one).

Moreover the temporary vector is built to contain also the agent number for
the speci�c considered price (through the command who), in order to do not loose
the identity of the agent that participates to the auction mechanism (in fact with-
out this command, the identity of each agent can be loosen because of the ask

command, that shu�es continuously the order of the agents).

86

Then the content of tmp is released into the two vectors logB, if the agent is a
buyer, and logS, if the agent is seller.

Finally the price is generated through the code:

if (not empty? logB and not empty? logS) and

item 0 (item 0 logB) >= item 0 (item 0 logS)

[set exePrice item 0 (item 0 logS)

let agB item 1 (item 0 logB)

let agS item 1 (item 0 logS)

for selling price (bid);

if (not empty? logB and not empty? logS) and

item 0 (item 0 logB) >= item 0 (item 0 logS)

[set exePrice item 0 (item 0 logB)

let agB item 1 (item 0 logB)

let agS item 1 (item 0 logS)

for buying price (ask).

The speci�cation item 0 (item 0 logB) and item 0 (item 0 logS), that
locates the �rst element of the vector, have that form because logB, logS are
matrices: the number of rows corresponds to the number of buying and selling
prices; the number of columns is two: the �rst column contains the prices, the
second column contains the number that identi�es the corresponding agent.

2.1.2 Level Price Real Data Agents

Starting from the work of Terna, g1_CDA_basic_model, that is a clear example
of how a class of non intelligent (simple) agents acts in an organized framework,
I put the basis of my work, de�ning a new class of agents: the Level Price Real
Data Agents (arbitrageur).

Those agents are `intelligent` because they do not adopt a market strategy
based on randomness, but they act as arbitrageurs.

They are inserted in the g1_CDA_basic_model framework: their participation
to the market depends always on an external real market price(in our case Ftse
All Share stock price) ;

they can decide

• to propose a bid price if the corresponding real price is lower than the lowest
price of the sellers vector logS, otherwise they will propose an ask price;

• to propose an ask price if the contemporaneous real price is higher than the
highest price of the buyers vector logB, otherwise they will propose a bid
price.

87

For this reason this category of agents works as it knows, some second in
advance the level that the market price will reach, basing their evaluations on a
real index.

In practice, the main part for the creation of that class, consist in:

1. creating a vector with the real prices, that can be red at any moment;

2. the creation of an e�cient counter for the number of the arti�cial market
prices,that are formed continuously.

This because once formed, an arti�cial market price should be synchronized with
each real market price, in order to compare them e�ciently.

The creation of the real price vector is obtained in the Setup procedure, through
the following code:

to read-file

file-open "Ftse_All_Share_nice_format.txt"

while [not file-at-end?][

;read one line

let in1 file-read

set realPvec1 lput in1 realPvec1

set realPvec2 lput in1 realPvec2

]

file-close

end

As usually happens the �le Ftse_All_Share_nice_format.txt must be in the
same folder of the NetLogo program, to be opened.

The counter j is putted at beginning of the arti�cial price formation part of
code:

ask turtles

[

set j j + 1

The proper trading strategy of arbitrageurs is implemented through the code:

if (not empty? logB and not empty? logS) and

item 0 (item 0 logB) >= item 0 (item 0 logS)

[

if j <= 10095[

ask arbitrageurs[

ifelse (not empty? logB and not empty? logS)

and item 0 (item 0 logS) > item j realPvec1

[let tmp2 []

88

set tmp2 lput price tmp2

set tmp2 lput who tmp2

set logS fput tmp2 logS

set AE AE + 1

set realPvec2 but-first realPvec2]

[let tmp2 []

set tmp2 lput price tmp2

set tmp2 lput who tmp2

set logB fput tmp2 logB

set realPvec2 but-first realPvec2

]]]

set exePrice item 0 (item 0 logS)

let agB item 1 (item 0 logB)

let agS item 1 (item 0 logS)

if (not empty? logB and not empty? logS) and

item 0 (item 0 logB) >= item 0 (item 0 logS)

[

if j <= 10095[

ask arbitrageurs[

ifelse (not empty? logB and not empty? logS) and

item 0 (item 0 logB) < item j realPvec1

[let tmp2 []

set tmp2 lput price tmp2

set tmp2 lput who tmp2

set logB fput tmp2 logB

set AE AE + 1

set realPvec2 but-first realPvec2]

[let tmp2 []

set tmp2 lput price tmp2

set tmp2 lput who tmp2

set logS fput tmp2 logS

set realPvec2 but-first realPvec2

]]]

set exePrice item 0 (item 0 logB)

let agB item 1 (item 0 logB)

let agS item 1 (item 0 logS)

The control if j < 10095 has been used to continue the arti�cial price for-
mation, even after the last element of the real price vector has been considered,
i.e. when arbitrageurs stop their strategy.

89

The Ftse All Share stock price is an index of the Telematic Stock Market,
governed by the Italian Stock Exchange (that replaces Mibtel from 2009).

It is composed by the aggregation of all the elements of FTSE MIB, FTSE
Italia Mid Cap e FTSE Italia Small Cap �nancial indexes, excluding FTSE Italia
Micro Cap.

In my thesis the arbitrageur agent will consider the time series generated by
10095 realisations of the real index, starting from the 13.12.2010.

2.1.3 Trend Agents

Another class of agents, that re�ects the real behaviour of lots of investors, that
trust in technical analysis, is the class ofTrend Agents. The word `trend` in �nance
is often associated to the moving average of a given index or price: the easier
moving average to implement is the `simple moving average`; it is a mean always
calculated on the past k realizations of the price.

The Trend Agents are able to calculate a simple moving average on a given sam-
ple; they base their trading strategy on the value of this trend indicator, comparing
it with the current market price (produced through the auction mechanism).

In my NetLogo program the sample number (k) is di�erent for each Trend
Agent, and it is given through the variable sample.

That variable is de�ned in the Setup procedure, in the following way:

set sample 50 - random 40.

The moving average is often used in technical analysis as a tool to predict
market prices movements: The bigger is the sample considered the more consistent
is the estimator, but at the same time the smaller is the sample the more sensitive
to current price variation the moving average is.

For what concern the strategy adopted in my program: a Trend Agent will
propose a bid price if the value of the sample mean is bigger than the current
market price, while he will propose an ask price if the value of the sample mean is
smaller than the current market price.

The parts of the code that characterize the behaviour of these agents are divided
into:

1. sample mean calculation for each agent according to the variable sample.

ask trendAgents

[

let p 0

let n length SboxP

90

if n > (sample + k) and sample > 0

[

let i 0 + k

while [i < sample + k - 1]

[set sm sm + item i SboxP

set i i + 1]

set sm sm / (sample)

set mv1 lput sm mv1

set mv2 lput sm mv2

set k k + 1

]

2. bid price formation condition:

ask trendAgents

[

if length days > sample and not empty? mv2 and

item 0 (item 0 logS) > item 0 mv2

[set sell false set buy true set pass false

;set mv2 but-first mv2

]

if length days > sample and not empty? mv2 and

item 0 (item 0 logS) < item 0 mv2

[set buy false set sell true set pass false

;set mv2 but-first mv2

]

if length mv2 = 2 [set mv2 but-first mv2]

]

3. ask price formation condition:

ask trendAgents

[

91

if length days > sample and not empty? mv2 and

item 0 (item 0 logB) > item 0 mv2

[set sell false set buy true set pass false

; set mv2 but-first mv2

]

if length days > sample and not empty? mv2 and

item 0 (item 0 logB) < item 0 mv2

[set buy false set sell true set pass false

;set mv2 but-first mv2

]

if length mv2 = 2 [set mv2 but-first mv2]

]

2.1.4 Volume Agents

This particular category of agents acts in market depending on trading volumes.
In capital markets, volume, or trading volume, is the number of shares or

contracts traded in a security or in an entire market during a given period of time.
In the context of stock trading on a stock exchange, the volume is commonly
reported as the number of shares that changed hands during the day.

In our case the market is made of only one stock, and the prices generated in
one transaction are prices per minute. To be consistent with reality, those agents
should evaluate the di�erence in market volumes , about at least every seven
hundred prices, i.e. one trading day (for consistency with respect to the common
de�nition of volumes).

In my program this kind of step seems too big as minimum, since the time
series of real prices consists in only 10095 elements and the e�ect of VolumeAgents
could be too small.

For that reason I have considered as step between successive trades, the value
of a slider (VolumeAgentStep) multiplied by ten: the range of the slider is [1 ,
100] with step 1.

In this way we get a minimum step of ten realisations of market prices, and a
maximum of 1000 realisations of market prices .

The main part of the program that characterize the Volume Agents behavior
is the following:

ask volumeAgents[ifelse jv >= VolumeAgentStep * 10[

92

if diff > 0

[set buy true set sell false set pass false set jv 0]

if diff < 0

[set sell true set sell false set pass false set jv 0]

if diff = 0

[set pass true set buy false set sell false set jv 0]]

[set pass true set buy false set sell false]

]

This part of code is located inside the auction price mechanism, and it is
repeated twice, i.e. for ask and for bid prices.

The variable jv counts the number of prices per minute.
The variable diff takes into account the di�erence between the purchase vol-

umes and the sale volumes. The related code that de�nes the variable diff is:
set diff (length logB - length logS)

Where logB is the vector of buyers, and logS is the vector of sellers (as ex-
plained in Section 1.1).

2.1.5 Stop Loss Agents

The Stop-Loss strategy is a strategy involving the shortage of a call and the trading
of a stock.

While the former is an operation made once, the latter could require more
trades depending on the path of the underlying.

The investor can take two possible positions:

Naked : the investor is short a call. It produces a pro�t equal to the call price in
t = 0 if the call is OTM (out-of-money) at the expiry date, but leads to
signi�cant losses when the call expires ITM (in-the-money).

Covered : the investor is short a call and long the underlying (assumed to be bought
at K, the strike price). It produces a pro�t equal to the call price in t = 0 if
the call expires ITM, but leads to signi�cant losses when it expires OTM.

The strategy kernel lies in the intersection between the two position.
It is a simple hedging strategy, and its main objective is to ensure that at time

T, the bank owns the stock if the option closes in the money and does not own it
if the option closes out of money.

The basic assumption for the functioning of the strategy are:

• Lognormality of asset values (underlying).

• Call priced using the Black-Scholes formula (BS).

93

In t = 0 the investor sells a call and has an in�ow equal to the call price. Since
in t = 0 the spot price is lower than the strike price the stop-loss investor is only
short a call. As soon as the stock price touches the strike price barrier from the
down the investor goes long on the underlying, whose value is K.

If the stock price hits again the barrier (this time from the up) the trader sells
the asset, remaining naked on the call. This procedure is repeated every time the
stock price equals K.

Therefore, the strategy is a combination of naked and covered positions that
exploits only the advantages of the two. In fact, when the option is ITM the loss
is avoided because the seller of the call holds the stock in the portfolio and the
call's payo�(from the seller point of view) becomes Max (K - K, 0). On the other
hand, when the option is OTM is not exercised, hence the payo� is 0. In any case,
the stop loss investor obtains a payo� equal to the call price received in t = 0.

To give a consistent explanation of the strategy, I will explain the Black-Scholes
model.

Black-Scholes model

The Black-Scholes model for calculating the premium of an option was introduced
in 1973 in a paper entitled, "The Pricing of Options and Corporate Liabilities"
published in the Journal of Political Economy. The formula, developed by three
economists, Fischer Black, Myron Scholes and Robert Merton , is perhaps the
world's most well-known options pricing model. Black passed away two years
before Scholes and Merton were awarded the 1997 Nobel Prize in Economics for
their work in �nding a new method to determine the value of derivatives (the Nobel
Prize is not given posthumously; however, the Nobel committee acknowledged
Black's role in the Black-Scholes model).

The Black-Scholes model is used to calculate the theoretical price of European
put and call options, ignoring any dividends paid during the option's lifetime.
While the original Black-Scholes model did not take into consideration the e�ects
of dividends paid during the life of the option, the model can be adapted to account
for dividends by determining the ex -dividend date value of the underlying stock.

The model makes certain assumptions, including:

• The options are European and can only be exercised at expiration.

• No dividends are paid out during the life of the option.

• E�cient markets (i.e., market movements cannot be predicted).

• No commissions.

94

• The risk-free rate and volatility of the underlying are known. and constant.

• Follows a lognormal distribution; that is, returns on the underlying are nor-
mally distributed.

The formula takes the following variables into consideration:

1. Current underlying price.

2. Options strike price.

3. Time until expiration, expressed as a percent of a year.

4. Implied volatility.

5. Risk-free interest rates.

The Black-Scholes pricing formula for call options is:

C(0) = S ·N(d1)−K · exp(−r · T) ·N(d2) (2.1)

where

d1 =
ln(S

K
) + (r + σ2

2
) · t

σ ·
√
t

d2 = d1 − σ ·
√
t (2.2)

C(0) = Call premium at time zero
S = Current stock price or underlying
K = Option strike price
r = Risk-free interest rate
N = Cumulative standard normal distribution
σ = St.deviation

The model is essentially divided into two parts: the �rst part, SN(d1), multi-
plies the price by the change in the call premium in relation to a change in the
underlying price. This part of the formula shows the expected bene�t of purchasing
the underlying outright. The second part, N(d2)Kexp(-rt), provides the current
value of paying the exercise price upon expiration (remember, the Black-Scholes
model applies to European options that are exercisable only on expiration day).
The value of the option is calculated by taking the di�erence between the two
parts.

To calculate the B-S formula with NetLogo we must consider that S, the stock
price, is basically generated by the randomAgents, through the code explained in
section 1.1 (g1_cda_basic_model) ; the calculations of input parameters K and r,
are exogenous, and so their value is represented by:

95

• the value of the r is inserted into a slider, i.e. risk-free;

• K is the strike, it represents a bet for the investor, so its value depends on the
circumstances; in the code the parameter is obtained through the command:

set strike exePrice + (random-float 2 - 1) * 200

The last parameter necessary to perform the B-S formula is N: unfortunately
there is not a NetLogo command to calculate the cumulative Standard Normal
distribution;

To solve the problem can be used the error function.
In mathematics, the error function (also called the Gauss error function) is a

special function (non-elementary) of sigmoid shape which occurs in probability,
statistics and partial di�erential equations. It is de�ned as

erf(x) =
2√
π

∫ x

0

e−t
2

The complementary error function, denoted erfc, is de�ned as:

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

= e−x
2

erfcx(x)

which also de�nes erfcx, the scaled complementary error function.
An approximation (with a polynomial of degree one) of erfcx (x) can be given

through the following NetLogo code.

to-report erfcc [x]

let z abs x

let q 1.0 / (1.0 + 0.5 * z)

let r q * exp (- z * z - 1.26551223

+ q * (1.00002368 + q * (0.37409196 +

q * (0.09678418 + q * (- 0.18628806 + q *

(0.27886807 + q * (- 1.13520398 + q * (1.48851587

+ q * (- 0.82215223 + q * 0.17087277)))))))))

ifelse (x >= 0) [report r] [report 2.0 - r]

end

Stop-Loss strategy on NetLogo

In order to properly set up the strategy we need to use all the parameters involved
in the computation of the call price, according to the Black-Scholes formula. A
crucial role is played by strike which creates a partition of the space changing the

96

composition of the portfolios of Stop-Loss investors and the magnitude of the cash
�ows as soon as exeprice hits its barrier.

Another important parameter is T, since for the strategy to work properly we
need to calibrate the correct timing. In fact, when the call expires the cash �ow
occurring can either be 0 or K.

In my program the value of T is given by a slider; it represents the step between
progressive implementation of the strategy: T = 1 means 700 price realisations,
i.e. about one trading day, since each market price is assumed to have one minute
frequency.

In order to generate the volatility of the stock we have to consider the log-
returns of the underlying, generated by:

set priceVector fput exePrice priceVector

if length priceVector > 1

[let tmp2 ln (item 0 priceVector / item 1 priceVector)

set logVector fput tmp2 logVector]

Each price generated is put in the pricevector in �rst position, that collects
prices generated in di�erent periods thanks to interaction among agents. Starting
from this vector we will de�ne the volatility of the log-returns, de�ned as the
natural logarithm of the last and second to last price.

When the vector gets too big, we eliminate the non relevant components by:

if length logVector > 700

[

set logVector butlast logVector

set sigma standard-deviation (logVector) * sqrt (36400)

]

The strategy duration is 700*T, where T can be arbitrarily chosen. The call
price is computed, according to the Black-Scholes formula, as a function of sigma,
T, r, S and K.

The strike price is formed on the basis of the last exeprice and a random �oat
which takes values between -1 and 1 , multiplied by 200. The strike price is only
computed at the beginning of the strategy and does not change until the call
reaches its expiry.

The part of code related to the check of the strategy (includes checking the
naked and covered conditions), that occurs at the end of each trading day, is the
following:

if jsl = 700 [ask SLAgents[

if sigma > 0 [

97

if naked and exeprice > strike

[

set covered true set naked false

set portf portf - exePrice

set price strike set buy true set sell false

]

if covered and exeprice < strike

[

set naked true set covered false

set portf portf + exeprice

set price strike

set sell true set buy false

]

]

]

set jsl 0

]

Where the index jsl memorizes the number of price realisation until 700, then
it restarts from zero.

The implementation of the strategy occurs at two di�erent times: T-1 and T ;
the NetLogo code is,

Note that agents a�ect the price formation mechanism when the spot price hits
the barrier of the strike price. The �nal step of the procedure occurs in T -1, when
the strategy terminates and the call expires. If the stop loss investor has a naked
position, then there is not any cash �ow since the option is not exercised. If the
stop loss investor has a covered position, he bene�ts of a positive cash �ow of K,
that is the amount paid by the buyer of the call for getting the underlying at a
price lower than the spot price observable in the market at that moment.

if k = 700 * (T - 1) and p > 0[

ask SLAgents[

if exePrice > strike

[

set portf portf + strike

]

]

]

Where k works as jsl, but it is restarted once reached the time T ; the variable
portf takes into account the value of the SLAgents portfolio.

For time T :

98

if k = 700 * T [

ask SLAgents[

set strike exePrice + (random-float 2 - 1) * 200

if sigma > 0 [

set d1 (ln (exeprice / strike)

+ (risk-free + ((sigma ^ 2) / 2)) * T) / (sigma * sqrt (T))

set d2 d1 - sigma * sqrt (T)

let a d1 / (2 ^ 0.5)

let b d2 / (2 ^ 0.5)

set Nd1 1 - 0.5 * erfcc a

set Nd2 1 - 0.5 * erfcc b

set BScall exePrice * Nd1 -

strike * exp(- risk-free * T) * Nd2

set BSvec fput BScall BSvec

ifelse exePrice < strike

[set portf portf + BScall

set naked true

set covered false]

[set portf portf + BScall - exePrice

set covered true

set naked false

set price strike

set buy true

set sell false]

]

]

set k 0

set p p + 1

]

In the code above the portfolio of SLAgents is modi�ed according to the naked
or covered situations; the parameters for the calculation of the option price are
reset and the naked and covered position are restated: this happens to let the
strategy restart (remember that these codes are repeated twice, in order to work
in both, buying market price and selling market price formation, generated through
the commands of the program g1_cda_basic_model explained in section 2.1.1).

2.1.6 Covered Agents

The Covered Agents breed, that I describe in this paragraph, represents a par-
ticular class of trading agents that focuses its market strategy on both technical

99

analysis and options.
In fact, �rst of all CoveredAgents are able to evaluate the market price trend

using a moving average, whose sample is a random number, that is di�erent for
any CoveredAgent (exactly as happened with trendAgents).

In this way those agents can identify two di�erent market situations:

1. increasing market, if the current arti�cial market price (exeprice) is bigger
than the last value of the moving average;

2. decreasing market, if the current arti�cial market price is smaller than the
last value of the moving average.

The last step of the strategy requires the calculation of the option price using
Black and Scholes, as happened with SLAgents (for the explanation of the B-S
formula, and its implementation on NetLogo , see Section 2.1.5 point 1).

Then each CoveredAgent will cover the two market situations described above,
in the following way:

• if there is an increasing market (case 1), the agent will sell a CALL option
OTM (out-of-the-money);

• if there is a decreasing market (case 2), the agent will sell a PUT option
OTM.

In �nance, a call option, often simply labeled 'call', is a �nancial contract
between two parties, the buyer and the seller of this type of option. The buyer
of the call option has the right, but not the obligation to buy an agreed quantity
of a particular commodity or �nancial instrument (the underlying) from the seller
of the option at a certain time (the expiration date) for a certain price (the strike
price). The seller (or 'writer') is obligated to sell the commodity or �nancial
instrument to the buyer if the buyer so decides. The buyer pays a fee (called a
premium) for this right.

Instead a put or put option is a stock market device which gives the owner the
right, but not the obligation, to sell an asset (the underlying), at a speci�ed price
(the strike), by a predetermined date (the expiry or maturity) to a given party
(the seller of the put). If the price of the stock declines below the speci�ed price
of the put option, the owner of the put has the right, but not the obligation, to
sell the asset at the speci�ed price, while the seller of the put, has the obligation
to purchase the asset at the strike price if the buyer uses the right to do so (the
buyer is said to exercise the put or put option). In this way the owner of the put
will receive at least the strike price speci�ed even if the asset is worth less.

100

In my NetLogo program, the expire date of the option is a random number,
di�erent for any agent; the trading strategy starts after the calculation of the
�rst moving average value, then it is always re-implemented after the expire date;
the strike changes depending on the agent considered (since its value contains a
random number), and on the current marked situation: to generate an OTM CALL
the strike should be greater than the current market price; while to generate an
OTM PUT, the strike should be smaller than the current market price (in this
case for current market price I mean the price used in the calculation of the B-S
formula, i.e. the one compared to the moving average at the beginning of the
trading strategy). For the reasons described above, each CoveredAgent owns a
di�erent B-S price.

Moreover the sale of the option is traded OTM, to earn a pro�t from both:
initial in�ow equal to the option price, spread between buying and selling price at
maturity.

All steps of the strategy in terms of cash �ows, can be synthesized as follows
(to brie�y analyse such steps I assume a generic starting and ending times for the
strategy, t = 0 and t = T respectively, for the generic CoveredAgent i).

CASE 1 (a) t = 0: if the current market price is bigger than the current value of

the moving average :
- BUY the underlying (−S0)

- SELL an OTM CALL (+c0)

(b) t = T:

- if the current value of the underlying is bigger than the strike: SELL
the underlying at the strike price (+ K)

- if the current value of the underlying is smaller than the strike:
SELL the underlying (+ST)

CASE 2 (a) t = 0: if the current value of the underlying is smaller than the current

value of the moving average: - SELL an OTM PUT (+p0)

(b) t = T:

- if the current value of the underlying is bigger than the strike: BUY
the current market price and then sell it immediately (- ST +ST)

101

- if the current value of the underlying is smaller than the strike:
BUY the underlying at the strike price (- K)

(Where S is the market price or underlying; K is the strike; c and p are respec-
tively the call and the put prices).

The NetLogo codes that characterizes the CoveredAgents behavior are divided
in the following parts.

• Calculation of the moving average, according to the variable sample (has
happened with trendAgents) :

ask coveredAgents

[

let pc 0

let nc length SboxPc

if nc > (samplec + kc) and samplec > 0

[

let i 0 + kc

while [i < samplec + kc - 1]

[set smc smc + item i SboxPc

set i i + 1]

set smc smc / (samplec)

set mvc1 lput smc mvc1

set mvc2 lput smc mvc2

set kc kc + 1

]

]

• De�nition of the two possible position, that can be assumed at the beginning
of the strategy, comprehending the calculations of both call and put prices
with B-S formula (the implementation of the B-S formula on NetLogo is
described in detail in Section 2.1.5 point 1).

ask coveredAgents

102

[

if length vecC > samplec and not empty? mvc2

and item 0 (item 0 logS) < item 0 mvc2 and not

finish and not stopc

[set strikec exePrice -

(random-float 2 * expiredate)

set pass true

set color green set buy2 true set buy1 false

if sigmac > 0 [

set d1c (ln (exeprice / strikec) +

(risk-free + ((sigmac ^ 2) / 2)) *

((expiredate * Tc) / 61200)) / (sigmac *

sqrt (((expiredate * Tc) / 61200)))

set d2c d1c - sigmac * sqrt

(((expiredate * Tc) / 61200))

;show d1

;show d2

let acc d1c / (2 ^ 0.5)

let bcc d2c / (2 ^ 0.5)

let cc -d1c / (2 ^ 0.5)

let dc -d2c / (2 ^ 0.5)

set Nd1c 1 - 0.5 * erfcc acc

set Nd2c 1 - 0.5 * erfcc bcc

set N-d1c 1 - Nd1c

set N-d2c 1 - Nd2c

set BSputc (strikec * exp(- risk-free *

((expiredate * Tc) / 61200))

* N-d2c - exePrice * N-d1c)

;show BSputc

show "Put"

set covPort covPort + BSputc

103

]

set stopc true

]

if length vecC > samplec and not empty?

mvc2 and item 0 (item 0 logS) > item 0 mvc2

and not finish and not stopc

[set strikec exePrice +

(random-float 2 * expiredate)

set pass true

let tmc []

set price exeprice

set tmc lput price tmc

set tmc lput who tmc

set logB lput tmc logB

set color blue set buy1 true set buy2 false

if sigmac > 0 [

set d1c (ln (exeprice / strikec) +

(risk-free + ((sigmac ^ 2) / 2)) *

((expiredate * Tc) / 61200)) / (sigmac *

sqrt (((expiredate * Tc) / 61200)))

set d2c d1c - sigmac *

sqrt (((expiredate * Tc) / 61200))

;show d1

;show d2

let acc d1c / (2 ^ 0.5)

let bcc d2c / (2 ^ 0.5)

let cc -d1c / (2 ^ 0.5)

let dc -d2c / (2 ^ 0.5)

set Nd1c 1 - 0.5 * erfcc acc

set Nd2c 1 - 0.5 * erfcc bcc

set N-d1c 1 - Nd1c

104

set N-d2c 1 - Nd2c

set BScallc (exePrice * Nd1c - strikec *

exp(- risk-free *

((expiredate * Tc) / 61200)) * Nd2c)

;show BScallc

show "Call"

set covPort covPort + BScallc - exeprice

]

;set mv2 but-first mv2

set stopc true

]

if length mvc2 = 2 [set mvc2 but-first mvc2]

]

Where the variables BSCallc and BSputc contains the current call and put
prices respectively; the variable covPort memorizes the cash �ows obtained
through the implementation of the strategy.

Remember that the strike to have an OTM situation should be: greater than
the underlying for the call, and smaller than the underlying for the put; this
fact can be seen in the code by the commands:

- set strikec exePrice + (random-float 2 * expiredate) for the
OTM call;

- set strikec exePrice - (random-float 2 * expiredate) for the
OTM put.

• The end of strategy depends on the variable expireDate, initialised in the
setup procedure through the command

set expireDate (random 50 * Tc + 10)

where the range of Tc is de�ned by a slider.

TheNetLogo code that de�nes the behavior of CoveredAgents at the expireDate,
is the following.

ask coveredAgents[

if jcc >= expiredate * Tc

105

[

if buy1[

ifelse exeprice > strikec

[set buy false set sell true

set pass false set price strikec

set stopc false set jcc 0

set covPort covPort + strikec]

[set pass false set buy false

set sell true set price exeprice

set stopc false set jcc 0

set covPort covPort + exeprice]]

if buy2[

ifelse strikec > exeprice

[set buy true set sell false

set pass false set price strikec

set stopc false set jcc 0

set covPort covPort - strikec]

[set pass false set buy true

set price exeprice set sell false

set stopc false

let tmc []

set tmc lput exeprice tmc

set tmc lput who tmc

show "buy sell"

set logS lput tmc logS

set covPort covPort - exeprice + exeprice set jcc 0]

]]]

The maturity of the options is set up at expireDate * Tc. The variable jcc

works as counter for the steps of the strategy, and it is speci�c of the CoveredAgents
breed.

106

2.1.7 Bollinger Bands Agents

This kind of agents can be considered as an implementation of the Trend Agents
category.

Bollinger Bands strategy

Their strategy is based on the concepts of 'support' and 'resistance' levels; These
values are said to be price levels above which it is di�cult for stock prices to rise,
or below which it is unlikely for them to fall, and they are believed to be levels
determined by market psychology.

John A. Bollinger (born 1950) is an American author, �nancial analist, con-
tributor to the �eld of technical analysis and the developer of Bollinger Bands.
His model was developed in the 80's and it consider:

1. Simple moving average, it is a mean of �xed amount of data (often twenty
days), generally it use the closing prices of the market. The term 'moving' is
referred to the fact that are consider the last willing prices. Indeed moving
average are smoothed lines that can show more easily price trends.

2. An upper band and a lower band which are calculated through k times (gen-
erally k equal to two) the volatility (statistically is the standard deviation).

So the upper band is obtained by adding to the moving average k times the
standard deviation, while the lower band is calculated subtracting to the moving
average k times the standard deviation. If stock prices follow a normal distribution
then Bollinger bands with k=2 will capture around 95 percent of price movements
(level of con�dence). The region above the upper band will be considered as
overbought; the region under the lower band will be considered as oversold.

So one possible strategy to buy or sell can be:

• Buying strategy:

PN(t− 1) < BBLOW
N (t− 1) and PN(t) > BBLOW

N (t)

• Selling strategy:

PN(t− 1) > BBUP
N (t− 1) and PN(t) < BBUP

N (t)

Where BBLOW
N and BBUP

N and represent the lower and the upper band respec-
tively.

The computational aspect, as for the other categories of agents is to modify the
program g1_basic_model in NetLogo, which generates a random market composed
by investors who sell or buy randomly.

107

The elaborate cares to put in the program, the active strategy, that is, enter
a code that calculates the moving average and Bollinger Bands, whereby then the
investor will decide whether to sell or buy.

Bollinger Bands on NetLogo

The �rst step is the creation of Bollinger Bands agents (BBAgents) according to
the slider nBBAgents. The crucial point of the Bollinger Bands strategy (BBStrat)
is the capability of BBAgents to compare each price realization with the value of
the bands at the same time. For this purpose it is necessary to memorize every
market price and every bands value in di�erent vectors (SboxP for prices, SboxLB
for lower band, SboxUB for upper band). Then in each tick (if the length of those
vectors is greater than two) the �rst two elements of the vectors are compared to
identify the overbought and oversold conditions.

to BBStrat

ask BBAgents[

if length SBoxLB >= 2 and length SBoxP >= 2 and

item 0 SBoxP < item 0 SBoxLB and

item 1 SBoxP > item 1 SBoxLB and

sold >= 1 [set BBpocket BBpocket - item 1 (SBoxP)

set overbought True

set oversold False

set ovB ovB - 1

set AR lput BBpocket AR

set purchase purchase + 1

set sold sold - 1]

if length SBoxUB >= 2 and length SBoxP >= 2 and

item 0 SBoxP > item 0 SBoxUB and

item 1 SBoxP < item 1 SBoxUB and

purchase >= 1 [set BBpocket BBpocket + item 1 SBoxP

set oversold True

set overbought False

set ovS ovS + 1

set AR lput BBpocket AR

set purchase purchase - 1

set sold sold + 1]]

To perform the strategy in continuous time, as imposed for the moving average
and the standard deviation, we must eliminate the �rst item of each vector, after
the command to BBStrat.

if length SBoxP >= 2 and length SBoxLB >= 2 and length SBoxUB >= 2

108

[set SBoxP but-first SBoxP

set SBoxLB but-first SBoxLB

set SBoxUB but-first SboxUB]

In our program BBAgents memorize every step of the strategy in the global
variable BBpocket : for what concerns the cash �ow statement the buy position
(overbought) has negative sign while the sell position (oversold) has positive sign.
BBAgents starts the strategy with a long position, and next they sell or buy only
if they respectively have bought or sold in previous periods.

Moreover BBAgents will enter in the price formation, that is the auction mech-
anism, only if there are the Bollinger signals of overbought or oversold.

In the program this is implemented through:

ask randomAgents

[if not pass and not out-of-market

[

let tmp[]

set tmp lput price tmp

ask BBAgents[if overbought [set tmp lput price tmp]]

ask BBAgents[if oversold [set tmp lput price tmp]]

set tmp lput who tmp

where �rst all random prices of randomAgents are putted in the vector tmp ;
then if the Bollinger strategy suggest to buy (overbought) or to sell (oversold),
also all random prices of BBAgents are putted in the vector tmp. Remember that
this vector is the main vehicle for the auction mechanism, as explained in Section
1.1.

2.2 Basic Framework

The basic idea that I want to develop in my thesis, refers to the creation of a basic
market structure, built with both RandomAgents and

Level Price Real Data Agents classes.
These two categories of trading agents are grouped in a NetLogo program,

called Arti�cial_VS_real_mkt. Its interface is shown in Figures 2.1, 2.2.

Figure 2.1 shows how appears the real price trend (of Ftse all share stock),
that is created in the setup procedure (explained in Section 2.1.2).

109

Figure 2.1: Arti�cial_VS_real_mkt interface after have pressed the setup button.

110

That trend is also an useful indicator, in order to compare the market price
generated step by step with the real one;

At the moment the program created the two categories of agents (one-hundred
RandomAgents according to the slider nRandomAgents, and one arbitrageur), and
their variables have been initialised; but they have not started the creation of the
arti�cial market yet.

The next step is to let the auction mechanism begin (explained in Section
2.1.1), and this is implemented by pressing the go button.

Figure 2.2 shows the appearance of the NetLogo interface when the market is
generated, i.e. pressing the go button.

Remember that(explained in Section 1.1):

• the slider nRandomAgents represents the number of RandomAgents that are
partecipating to the auction price formation. It is kept always �xed at one-
hundred;

• the slider passLevel represents the probability that a RandomAgent will not
enter in the auction price formation; It is allowed to variate in an interval
with extremes 0.00 and 0.80, with step 0.01 (the possible framework with
pass probability equal to one seems too strong, meaning that the possibility
that the market does not exist is taken into account);

• the slider Volatility_of_the_stochastic_part represents the variance of
the stochastic part of the price: the price that each RandomAgent will propose
in the auction mechanism is in facts obtained as the sum of a �xed part
(21300) and a stochastic part: it is a number coming from a Standard Normal
distribution with mean zero and variance equal to the value of the slider.

• the monitor percentage shows the ratio between the number of interventions
of the agent arbitrageur in the market and the total number of real market
prices considered (10095).

Note that the values of the parameters set up in the sliders are chosen based
on a rule of thumb (except for nRandomAgents that is kept �xed); in facts there
is not a speci�c combination of such values (for example the deterministic part
and stochastic part of the price), that ensures the smallest distance between the
arti�cial and the real market.

With BehaviorSearch we can state (see Section 5.1) that in the basic framework,
the di�erence in absolute value, between the two markets considered is at least �fty

111

Figure 2.2: Arti�cial_VS_real_mkt interface: press the go button, wait until tick
88, then stop the arti�cial market.

112

units, while at max it is about sixty units per-price; it means a di�erence of about
0.0025 percent in the best situation, and a di�erence of about 0.0030 percent in the
worst situation. So in this framework it seems not too relevant the value assumed
for the sliders.

Following a rule of reason, I have chosen as custom parameters:

• Deterministic part of the price (variable price) equal to 21300, that is close
to the mean of the 10095 real prices considered, related to the Ftse All Share
stock prices with frequency one minute.

• The stochastic part of the price, governed by the slider

volatility_of_the_stochastic_part, is set equal to 30. (changes in this
value modify the appearance of the arti�cial market,however the distance
with respect to the real market remains negligible).

• passLevel is set equal to 0.20.

• I am not interested in the possibility that the RandomAgents have to be out
of market; indeed I will not consider the slider out_of_marketLevel in the
analyses.

We can see that the arti�cial price trend (the red one), generated by the com-
bination of both the agents categories RandomAgent and arbitrageur, is very
similar to the real one (the blue one); while the percentage of direct arbitrageur's
intervention in the market is quite small, since it is about 19 percent (note that
the variable percentage is proportional to the number of agents involved in the
market, and to the variability of each RandomAgents' price, that is governed by
the value of the slider Volatility_of_the_stochastic_part) .

What happens to the arti�cial market when I press the go button? In practice
the arbitrageur agent forces the arti�cial market to replicate the real one, in a
more or less consistent way (depending most of all on randomness, and in part on
the value of the sliders).

A deeper comparison of the two typologies of markets ca be seen in Figure 2.3.

In this framework, my work is focused on the study of how the inclusion of other
categories of trading agents can in�uence the arti�cial market trend so generated;
these categories are the ones described in Section 1.

The objective of my thesis is to identify the optimal parameters (if any), char-
acterising each typology of agents (the sliders), that minimize the distance between
the arti�cial and the real market.

113

Figure 2.3: Detail of arti�cial (red line) and real (blue line) market, in the NetLogo
interface.

114

It means optimize the agents behavior: in particular I will look for di�erent
optimal agents parameters, related to various frameworks, characterised by some
market structures.

Such kind of analysis (Section 5) can be performed using BehaviorSearch soft-
ware tool (deeply explained in Chapter) that exploits genetic algorithm to �nd
the optimal solution.

Then the last step that will conclude my thesis will contain the implementation
of some statistical tests, in order to compare the optimal values of the trading
strategies obtained with BehaviorSearch.

Brie�y next sections contain:

1. de�nition of the basic market structures: starting from the framework with
one-hundred RandomAgents and one arbitrageur, the e�ect of inserting
each trading agents category is analysed individually;

2. de�nition of more complex market structures: in order to study the aggregate
e�ect on the arti�cial market of multiple categories of agents;

3. I will report the most signi�cant simulations, (obtained pressing the go but-
ton) to see the appearance of the di�erent market structures (NetLogo plots
);

4. I will show the BehaviorSearch analyses and the most interesting results,
related to the market structures de�ned: the �tness is the distance between
arti�cial and real markets, and it must be minimized;

5. conclusions on the analyses implemented: comments will refer to the statis-
tical tests of ANOVA, and to some regressions on the data collected with
BehaviorSearch.

Note that the steps above are focused on the study of the e�ects of the indi-
vidual breed in the market; it is simpler to investigate this behavior case by case,
instead of considering all agents parameters as variables in each BehaviorSearch
trial.

So the approach of my thesis starts from the particular to approach the much
complex step by step.

The evaluation of the di�erence between the arti�cial and the real markets is
obtained by inserting the following NetLogo command, just after the de�nition of
the variable exeprice in the go procedure:

if j < 10095 [set artificialVSreal artificialVSreal

+ (abs (exeprice - item 0 realPvec1)) / 10095]

115

The variable artificialVSreal memorizes the average distance between the
two markets, in absolute value.

2.3 Market structures

After the de�nition of the basic framework, the next step is to develop di�erent
market structures in order to analyse separately the in�uence that each category
of agent have on the arti�cial market showed in the previous section.

For this purpose I start with the simpler market structures, composed by the
basic framework plus one category of intelligent trading agent, such that it can be
easy to analyse the behavior of each breed one at a time.

Moreover, Section 2.3.2 contains two more complex market structures, obtained
by adding to the basic framework more than one category of trading agents: in
this way should be possible to study the aggregate e�ect on the arti�cial market
of such breeds.

2.3.1 Market structures: basic framework plus one trading

agents breed

First of all I de�ne �ve new market structures, obtained by adding each category
of trading agent explained in Sections 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7 to the basic
framework.

To be consistent with reality, for each market structure, the number of trading
agents inserted in the basic framework (it is always represented by a slider) is
included in the interval [0 , 5]; it means that the percentage of trading agents with
respect to RandomAgents cannot be more than �ve percent.

The new markets so created, are implemented through the following programs:

1. AV.nlogo: it is created by inserting the volume agent category (Section 2.1.4)
in the basic framework; it means that we are considering three typologies of
trading agents, i.e. RandomAgents, arbitrageur, volumeAgents. However
in the proper analysis I will study only the variables a�ecting the behavior
of volumeAgents, in order to �nd the optimal values of their sliders, with
BehaviorSearch.

Remember that volumeAgents participate to the auction mechanism gen-
erated by the RandomAgents, depending on buying and selling volumes. It
means that when they establish to enter in the market, they decide to be-
come buyers if there are more buyer agents than seller agents; while they
decide to become sellers, if there are more seller agents than buyer agents; as

116

explained in Section 2.1.1, RandomAgents become buyers or sellers depend-
ing on randomness, in fact they participate to the market with probability
0.8, then they have probability 0.5 to either buy or sell.

Figure 2.4 shows the NetLogo interface of AV.nlogo program, after the im-
plementation of the setup procedure.

The slider VolumeAgentStep indicates the magnitude of the step between
successive interventions in the market auction mechanism, produced by Volu-
meagents ; if the value of the slider is equal to one, the trading agents con-
sidered will participate to the market at each new price formation.

2. AT.nlogo: it is created by inserting the trend agent category (Section 2.1.3)
in the basic framework; so this market structure is composed by the follow-
ing agents: one-hundred RandomAgents, one arbitrageur, a certain number
of trendAgents (according to the slider nTrendAgents). As explained in
Section 2.1.3, trendAgents decide whether to buy or sell if the current mar-
ket price (exeprice) is respectively under or above the value of a moving
average; the moving average considered in each evaluation is di�erent for any
trendAgent.

Figure 2.5 shows the NetLogo interface of the AT.nlogo program, after the
implementation of the setup procedure.

The slider StartingMA de�nes the �xed number that is fundamental in the
creation of a di�erent moving average for each trading agent considered: in
the setup procedure any trendAgents is initialised with a di�erent mov-
ing average, calculated as the sum of the number selected for the slider
StartingMA, and a stochastic number that is an integer in the interval [0 ,
40] .

I have added this slider, because this can lead to interesting results in term
of di�erence between arti�cial and real markets, as a function of the width of
the sample used for the moving average considered (I have chosen as custom
value for this slider the number �fty as shown in Figure 2.5).

3. AB.nlogo: the current program can be obtained by adding the Bollinger
Bands agents category (BBAgents) to the basic framework discussed in Sec-
tion 2.2 . This typology of agents, explained in Section 2.1.7, will decide to

117

Figure 2.4: NetLogo interface of the program AV.nlogo.

118

Figure 2.5: NetLogo interface of the program AT.nlogo.

119

buy or sell in the market, depending on support and resistance levels de�ned
in the John Bollinger 's method.

The method requires the calculation of two statistical measures: a moving
average (that in this case is equal for all BBAgents, while it was di�erent for
any trendAgent) and a standard deviation (calculated on the market prices
and on the moving average). The Bollinger Bands are built by summing and
subtracting to the moving average, the standard deviation multiplied by a
constant (upper and lower band).

Then suppose that time t corresponds to the present: if the market price
at time t - 1 is less than the corresponding value of the lower band at
the same time (under the lower band), and at time t it is greater than the
corresponding value of the lower band (above the lower band), BBAgents
will become buyers; vice-versa if the market price at time t - 1 is above the
upper band, and at time t it is under the upper band.

Figure 2.6 shows the NetLogo interface of the AB.nlogo program.

The sliders that directly in�uence the Bollinger Bands trading strategy are:

• nMovingAverage : represents the magnitude of the sample considered
for the moving average calculation (it is equal for all BBAgents)

• Bandwidth : it is the constant, that multiplied by the standard devi-
ation, is equal to one half of the total width of the bands: in fact by
summing this value to the moving average we get the value of the upper
band, while by subtracting it to the moving average we get the value of
the lower band.

The plot named BollingerBands shows four variables together: the market
price(exeprice), the lower (LB) and the upper band (UB), the moving
average (MA)

4. ASL.nlogo: this program, (as the previous ones) consists of three categories
of af agents: RandomAgents , arbitrageur , and SLAgents (explained in
Section 2.1.5).

The behavior of SLAgents in the arti�cial market built with the basic frame-
work conditions, follow a Stop-Loss strategy : it requires the calculation of
the option price, obtained through the Black and Scholes formula;

120

Figure 2.6: NetLogo interface of the program AB.nlogo.

121

Those agents can hold two possible positions depending on the market price
trend: naked and covered.

In the naked position the investor is short a call. It produces a pro�t equal to
the call price in t = 0 if the call is OTM (out-of-money) at the expiry date,
but leads to signi�cant losses when the call expires ITM (in-the-money)

In the covered position the investor is short a call and long the underlying
(assumed to be bought at K, the strike price). It produces a pro�t equal to
the call price in t = 0 if the call expires ITM, but leads to signi�cant losses
when it expires OTM.

The NetLogo interface of the program ASL.nlogo, after the implementation
of the setup procedure, can be seen in Figure .

The slides that control the behavior of SLAgents are two.

• risk-free : it represents the risk-less rate of return in the market; its
value is exogenous with respect to the arti�cial market created through
the auction mechanism. However it is necessary to calculate the value
of the option with the Black and Scoles formula.

• T : it is the step between successive checks of the strategy; it is measured
in trading days, in which one trading day is assumed to generate about
700 market prices (frequency one minute).

The plot named StopLossPortfolio memorizes the cash �ows owned by
SLAgents.

5. AC.nlogo: the program combines the basic framework with the CoveredAgents
breed, explained in Section 2.1.6 ; indeed also in the market structure so cre-
ated, we have three categories of agents in total.

Covered agents invest in the market through a strategy that both uses options
and trusts in technical analysis.

First of all this breed is programmed to identify two di�erent circumstances:
an increasing market if the current arti�cial price is greater than a simple
moving average (that is an internal variable speci�c of the breed), a decreas-
ing market in the opposite situation; those circumstances are covered by
selling an out-of-money call in the �rst case, and selling an out-of-the-money
put in the second case.

122

Figure 2.7: NetLogo interface of the program ASL.nlogo.

123

The strategy ends at the maturity date of the options, producing cash �ows
and market investments, due to the rights of such options (see section 1.6).

The NetLogo interface of AC.nlogo, after the initialisation of all agents vari-
ables (pressing the setup button), is shown in Figure 2.8.

The behavior of CoveredAgents is a�ected by the following sliders, that are
breed speci�c.

• nCoveredAgents de�nes the number of covered agents that are created
in the market through the setup procedure (there is a slider like this,
for any category of trading agents).

• risk-free : it works as for SLAgents (see point 4 of this Section) ;
it de�nes the risk-less rate, that is one of the input required for the
calculation of the B-S formula.

• Tc : this slider a�ects the expire date of each option that will be trade
in the market, during the implementation of the go procedure. In fact,
this maturity date is driven by both Tc and the variable expireDate,
through the formula

maturity = expireDate * Tc ;

while Tc ranges from one to �fty with step one, expireDate is a random
number, that is di�erent for any CoveredAgent (it is an integer random
number, included in the interval [11 , 60]).

• sampleStoch in�uences the magnitude of the sample (variable samplec
) considered for the calculation of the simple moving average (necessary
to start the CoveredAgents strategy, i.e. to identify an increasing or
decreasing market).

This sample is computed for each covered agent in the setup procedure;
its formula is :

sample = 100 - random number in the interval [1 , sampleStoch]

So if I set a bigger sampleStoch, the probability of getting a lower
sample for the moving average increases, and vice-versa.

Moreover, this slider a�ects the starting time of the trading strategy,
since each CoveredAgent will calculate for the �rst time the B-S price
, when the �rst value of the moving average is available.

The monitor sigma indicates the value of the standard deviation of logarith-
mic returns, calculated on the past sample realisations.

124

Figure 2.8: NetLogo interface of the program AC.nlogo.

125

Instead, the plot CoveredPortfoliomemorizes the cash �ows of all CoveredAgents
; in this way it is possible to check the pro�tability of their strategy.

2.3.2 Market structures: basic framework plus more than

one trading agents breed

Up until now, in this section we spoke about market structures with only one class
of trading agents operating in the basic framework de�ned in section 2.1 .

It can be interesting to study the aggregate e�ect of di�erent categories of
agents in the same (basic) framework; for that reason in this section I introduce
three di�erent market structures, that are more complex with respect to those
explained in Section 2.3 .

The �rst market structure so de�ned, comprehends the agents that base their
behavior on technical analysis: trendAgents, and BBAgents.

The second market structure adds to the basic framework, the two categories
of agents that trade options, to cover their investments in the underlying, i.e. the
arti�cial market price.

These breeds are SLAgents andCoveredAgents.

The third market structure, comprehends all trading agents de�ned so far:
volumeAgents, trendAgents, BBAgents, SLAgents.

The NetLogo programs related to these three market structures are:

1. ABT.nlogo: this program is characterised by the following breeds;

(a) RandomAgents : they are fundamental for the creation of the market
price. their behavior is explained in Section 2.1.1 .

(b) arbitrageur : it is necessary to drive the arti�cial market price near
a real market price (Ftse All Share stock). This breed together with
RandomAgents forms the basic framework.

(c) trendAgents : they base their trading strategy on the value of a simple
moving average, that is di�erent for any trendAgent.

(d) BBAgents : this class decide to trade depending on the value of the cur-
rent market price with respect to the Bollinger Bands : these bands re-
quire the calculation of a moving average, that is �xed for any BBAgent,
and the standard deviation calculated on the moving average.

The NetLogo interface showed in Figure 2.8 , contains all the sliders that
characterise the breeds mentioned.

126

Figure 2.9: NetLogo interface of the program ABT.nlogo.

127

2. A-C-SL.nlogo: overall the program consist of the following agents breeds.

(a) RandomAgents : they are the main vehicle of the auction mechanism;
their investments are driven by randomness.

Considered alone in the market, this breed is able to generate a realistic
price trend. For this reason their number should be much larger than
that of other agents.

(b) arbitrageur : it drives the arti�cial market price, near the values of a
real price (Ftse All Share stock), whose values are red from a �le, and
are characterized by a high frequency (one minute).

(c) SLAgents : they invest in the arti�cial market, through the identi�ca-
tion of a naked, and a covered positions, both characterized by a call
option trade.

For that reason, this breed requires the calculation of the call option
price using the Black and Scholes formula.

(d) CoveredAgents : they have a mixture of the capabilities of trendAgents
and SLAgents. They can evaluate the price level with respect to a mov-
ing average, identifying an increasing or decreasing market situation;
according to these two circumstances they can trade an OTM call, or
an OTM put respectively.

Then, also CoveredAgents are able to compute the option price using
the Black and Scholes formula.

The NetLogo interface of the program A-C-SL, containing all the sliders
characterising the four breeds discussed above, can be seen in Figure 2.10 .

Note that the risk-less rate , should be unique in the market; for this rea-
son the corresponding slider, risk-free, is used by both SLAgents and
CoveredAgents.

3. A-B-C-T-SL-V.nlogo: this program contains all breeds de�ned so far (de-
scribed in Sections 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7).

Brie�y they are:

(a) RandomAgents : they decide to buy or sell depending on randomness.

128

Figure 2.10: NetLogo interface of the program A-C-SL.nlogo.

129

(b) arbitrageur : he participates to the auction mechanism for the for-
mation of the market price, depending on the values of Ftse All Share
stock.

(c) trendAgents : they base their trading strategy on the value of a moving
average, that is di�erent for any trendAgent.

(d) BBAgents : they identify support and resistance levels depending on the
value of the market price with respect to Bollinger Bands (explained in
Section 2.1.7).

(e) VolumeAgents : they participate to the market depending on trading
volumes.

(f) SLAgents : their investments in the market are driven by a Stop Loss
strategy (explained in Section 2.1.5), that requires the calculation of the
value of a call option, obtained through the Black and Scholes formula.

(g) CoveredAgents : they base their trading strategy on both : the value
of a moving average, di�erent for any CoveredAgents, and the trade of
call and put options, calculated through the Black and Scholes formula.

The NetLogo interface is showed in Figure 2.9 .

2.3.3 Agents e�ect on the market

The core structure of the NetLogo program that de�nes the auction mechanism (of
g1_CDA_basic_model explained in Section 2.1.1), ensures a realistic price trend
that comprehends bull an bear situations.

In general the terms bull market and bear market describe upward and down-
ward market trends, respectively, and can be used to describe either the market
as a whole or speci�c sectors and securities.

In particular

• A bull market is associated with increasing investor con�dence, and increased
investing in anticipation of future price increases : in our framework it hap-
pens if there are more buyers than sellers.

• A bear market is a general decline in the stock market over a period of time.
It is a transition from high investor optimism to widespread investor fear
and pessimism : in our framework it happens if there are more sellers than
buyers.

130

Figure 2.11: NetLogo interface of the program A-B-SL-T-V.nlogo.

131

The framework created in g1_CDA_basic_model allows also the veri�cation
of economic bubbles.

An economic bubble (in our case price bubble) is de�ned as a 'trade in high
volumes at prices that are considerably at variance with intrinsic values '.

Bubbles are often conclusively identi�ed only in retrospect, when a sudden
drop in prices appears. Such a drop is known as a crash or a bubble burst.

Both the boom and the burst phases of the bubble are examples of a posi-
tive feedback mechanism, in contrast to the negative feedback mechanism that
determines the equilibrium price under normal market circumstances. Prices in an
economic bubble can �uctuate erratically, and become impossible to predict from
supply and demand alone.

In our case bubbles can happen during extreme bull (bear) situations, that
produces a big increase in the variance of buying (selling) prices (ordered in logB

and logS vectors); moreover they are impossible to predict since they are linked
to randomness.

Now we know that considering g1_CDA_basic_model, the situations described
above are completely linked to the random behavior of RandomAgents.

But it can be di�erent if we consider other breeds of intelligent agents, together
with RandomAgents.

1. The clearest e�ect on the market is the one of VolumeAgents : they trade
only when there is a di�erence between buying and selling volumes, enforcing
the bigger one.

If the value of the slider nVolumeAgents is big with respect to nRandomAgents
(at least twenty percent), and the frequency of their trading decision is suf-
�ciently high (every ten market prices realisations), this breed can often
enforce bull and bear markets, easily producing bubbles.

However in general, if the number of VolumeAgents is quite low with respect
to the one of RandomAgents, their e�ect on the price trend is di�cult to see,
and the variable diff (that measures the di�erence between buying volumes
and selling volumes) oscillates more frequently between positive and negative
values over time (Figure 2.10).

Figure 2.12 shows the behavior of the variable diff de�ned as

length logB - length logS, in a market populated by 100 RandomAgents
and 10 VolumeAgents ; moreover the trading frequency of VolumeAgents is
one out of ten price realisations.

132

Figure 2.12: plot of the variable di� after one-hundred ticks.

133

Figure 2.13: plot of the variable di� after one-hundred ticks.

Conversely, if we consider an extreme situation with only ten RandomAgents

and �fty VolumeAgents, the trend of the variable diff results more smoothed,
(and with smaller variance, since it is more di�cult to have a market price
reversal once the variable diff becomes positive or negative), as shown in
Figure 2.11.

2. Since all BBAgents invest following the same moving average, the e�ect on the
market of applying their Bollinger strategy can produce results very similar
to those expected for VolumeAgents : they should drive the market according

134

to their overbought and oversold conditions pushing to bull markets in the
�rst case and to bear markets in the second. However as happened for
VolumeAgents, the magnitude of the slider nBBAgents strongly a�ects this
phenomenon.

The di�erence with respect to VolumeAgents should be the fact that reversals
in the market price are no more driven by volumes, but they are in�uenced
by the position of the market price with respect to the bands (de�ned in
Section 2.1.7).

However, the e�ect of BBAgents on the arti�cial price, is di�cult to see in
reasonable conditions, (i.e. magnitude of nBBAgents smaller or equal than
�ve percent of the slider nRandomAgents) : for this purpose I will show two
opposite situations.

(a) Market populated by one-hundred RandomAgents and one BBAgent :
strong oscillatory trend, overbought and oversold situations cannot be
seen (Figure 2.12).

(b) Market populated by only ten RandomAgents and �fty BBAgents : quite
smoothed trend, with overbought (oversold) conditions corresponding
to strong bull (bear) markets Figure 2.15.

.

Both market frameworks are evaluated considering: �xed part of market
price equal to 21000, variable part of market price distributed as a Normal
random variable with mean zero and variance thirty; passLevel equal to 0.2
; seed equal to 2.

In my study on the behavior of trading agents I have opted for a moving
average, that is the same for all BBAgents, in order to precisely analyse
its value with BehaviorSearch (moreover in my analysis framework, I will
consider only �ve BBAgent at most, and so their e�ect should not be too
visible, without leading to extreme price variations).

3. For SLAgents the situation is di�erent: their investment strategy depends
mainly on a bet, performed through the identi�cation of a strike, whose
calculation is exogenous with respect to the variables that de�ne the market.

135

Figure 2.14: plot of the variable exeprice: market with 100 RandomAgents and
one BBAgent.

136

Figure 2.15: plot of the variable exeprice: market with 10 RandomAgents and 50
BBAgent.

137

Each SLAgent compares periodically the value of such strike, with the current
market price; then at the expire date(after a certain step, whose possible set
of values is de�ned in Section 2.1.5 point 2) according to naked and covered

situations (described in section 2.1.5) he decides whether to be a buyer or a
seller: in both cases he puts in the auction mechanism the strike, as possible
ask or bid price (note that, contrary to overbought and oversold conditions
for BBAgents, naked and covered positions may be di�erent for any SLAgent
at a given time, since such agents own di�erent strikes).

For that reason the e�ect on the arti�cial market of such breed depends on
the value of the strike, and it is not visible even in extreme situations, if the
range of possible strike values is close to that of the market price.

However these considerations are made considering a market populated only
by RandomAgents and SLAgents.

4. trendAgents invest according to the market price level, with respect to a
simple moving average, that is calculated on a di�erent sample for each
trenAgent.

If the market price is smaller than the value of the moving average the agent
becomes a buyer and vice-versa.

In a framework consisting of only the two breeds, RandomAgents and trendAgents,
an excessive number of the last with respect to that of the �rst, leads to
extreme situations very similar to those observed for VolumeAgents and
BBAgents, but even more marked.

If we build a market with ten Randomagents and �fty trendAgents we always
obtain one of the following market trends:

(a) Perpetual bull market: there are no arti�cial price reversals; all trendAgents
become buyers (Figure 2.16). It is normal the fact that in a market com-
posed by only sixty agents, if there are always (at any time) at least
�fty buyers, the market price will continue to grow perpetually.

(b) Perpetual bear market: there are no arti�cial price reversals; all trendAgents
become sellers (Figure 2.17).Unsurprisingly, in a market composed by
only sixty agents, if there are always at least �fty sellers, the market
price will continue to decrease perpetually.

138

Figure 2.16: trendAgents, case(a) :plot of the variable exeprice after �fty ticks,
seed = 3.

139

Figure 2.17: trendAgents, case(b) :plot of the variable exeprice after �fty ticks,
seed = 7.

140

Figures 2.14, 2.15, are constructed using a price (owned by agents) with
�xed part equal to 21000, changeable part distributed as a Normal random
variable with mean zero and variance thirty; passLevel equal to 0.2 .

As happened for previous breeds, also for trenAgents, their e�ect on the
market is not visible for reasonable values of the slider nTrendAgents with
respect to the slider nRandomAgents (the ratio should be at least 1 / 20).

5. CoveredAgents e�ect on the market is very di�cult to predict, since their
strategy is rather complex. This breed starts its investment approach, by
evaluating the market price trend, exactly as happen with trendAgents ;
but then CoveredAgents do not become only buyers or sellers depending
on the trend conditions checked (Section 2.1.6) : their investments are also
driven by the sale of either an OTM call or an OTM put options.

If we consider a market populated by only RandomAgents and CoveredAgents,
it seems that this last category of agents leads to an increasing price trend,
when it chooses to sell the call option, while it leads to a decreasing price
trend when market conditions suggest to sell the put option (for a more
detailed description of the behavior of these agents see Section 2.1.6).

In this case, the number of 'intelligent' trading agents seems not as relevant
as for previous breeds: even in small number (3-4), CoveredAgents can easily
produce slightly bull or bear markets, that lasts for many ticks.

Some examples of the e�ect on the arti�cial market, produced by those
agents, can be seen in Figures 2.18, 2.19.

Figures 2.18, 2.19 represents the plot of the variable exeprice : the values
of the sliders characterising RandomAgents and CoveredAgents are:

- nRandomAgents = 100

- nCoveredAgents = 4

- pass-level = 0.2

- risk-free = 0.05

- Tc = 20

- sampleStoch = 30

141

Figure 2.18: CoveredAgents : slightly bull market; plot of the variable exeprice
after one-hundred ticks, seed = 4.

142

Figure 2.19: CoveredAgents : slightly bear market; plot of the variable exeprice
after eighty-�ve ticks, seed = 9.

143

- Volatility_of_the_stochastic_part = 30

Di�erently from other breeds, the e�ects on the price trend, of changing the
values of the sliders characterizing the CoveredAgents trading strategy (i.e.
Tc and sampleStoch) , are more strong, and can lead to quite di�erent price
trends.

Moreover, implementing several trials, obtained by changing the value of the
input seed, (and then pressing the go button), we can note that it is easier
to have a smoothed bull market (sell the OTM call), instead of a smoothed
bear market (sell the OTM the put); this is probably due to the fact that on
average CoveredAgents are more inclined to buy than to sell, but it is not
clear why.

One possible explanation can be the fact that in general the market price
trend, generated by RandomAgents during the �rst ticks is often increasing,
consequently forcing CoveredAgents to sell the call option and to buy the
underlying.

In fact if we increase the sample of the moving average (decreasing the slider
sampleStoch), and if we enlarge the maturities of the options (increasing
the slider Tc), the price movements seem to become more random.

Note that this happens only in a framework in which the price trend is mainly
driven by RandomAgents ; if we add the arbitrageur breed, we can do not
care about that problem.

2.4 Simulations

The objective of this Section is to show some results, in terms of market price
trend, obtained by implementing the go procedure of the programs created so far.
They are:

• those explained in Section 2.3.1, i.e. characterised by a total of three breeds
of agents: AV.nlogo, AT.nlogo, AB.nlogo, ASL.nlogo, AC.nlogo;

• those explained in Section 2.3.2, that are composed by more than three
breeds of agents overall: ABT.nlogo, A-C-SL.nlogo, A-B-SL-T-V.nlogo.

For this purpose I have to de�ne a set of custom values for the parameters
(shared to all breeds) that a�ect the price formation (the �xed and variable parts
of the price and the sliders value) : those custom values will work as a benchmark,
in the major part of the further analyses (The possible range of values of such

144

sliders, will be discussed in detail in next Section.) . In this way it should be
possible to exploit comparisons between similar frameworks.

These guidelines are the following:

1. As I have stressed in Sections 1 and 2, each breed of agents own a vari-
able price, that corresponds to the price that they can put in the auction
mechanism. This variable consists of two components: a �xed part, that is
initialised in the setup procedure, and a variable part, that changes period-
ically in the go procedure. The �xed part is the same among agents, while
the variable part is di�erent for any agent (note that the de�nition of the
price in such way is necessary for the functioning of the auction mechanism).

Since my study is based on the comparison between an arti�cial market and
a real one, (the �rst realigned to the last through an arbitrageur), I have to
ensure a price formation consistent with the real price.

Following this objective, all simulations consider a �xed part of price (ini-
tialised as exeprice in the setup procedure) equal to 21300 (that is close
to the mean of the real price time series, that is about 21100); the variable
part is set equal to a Normal random variable with mean zero and variance
thirty (following a rule of thumb).

Section 5.1 contains a detailed analysis with BehaviorSearch about the struc-
ture of the price used by each agent.

2. Since the program g1_CDA_basic_model, (explained in Section 1.1) creates
a market with realistic price movements (Section 3.3), it is fundamental to
maintain a great number of RandomAgents ,with respect to the number of
the other breeds. In fact RandomAgents represent the main vehicle for the
formation of the arti�cial market: for this reason their number (determined
by the slider nRandomAgents) is kept �xed to one-hundred.

While according to a rule of thumb, the number allowed for each other agent
breed cannot be greater than the �ve percent of nRandomAgents. For the
simulations of this Section, this number will be set equal exactly to �ve.

3. The slider passLevel (as stressed in Sections 2.1.1 and 2.3.1), represent
the probability of RandomAgents of do not participate in the arti�cial price
formation; this probability should be quite low, for the reasons explained in
point 2. In next simulations the value of this parameter will be assumed
�xed at 0.2 .

The value of the sliders, that are breed speci�c (discussed in Section 3) will be set
up case by case.

145

2.4.1 Comparisons between arti�cial and real market : AV.nlogo

The program AV.nlogo has been discussed in section 2.3.1 (point 1) .
It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. VolumeAgents (5); this breed bases its trading strategy on the sliders:

• VolumeAgentStep (Section 2.3.1 point 1). It determines the frequency
of the strategy: it is kept �xed at 10 .

2.4.2 Comparisons between arti�cial and real market : AT.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. trendAgents (5); this breed bases its trading strategy on the sliders:

• StartingMA (Section 2.3.1 point 2). It a�ects the magnitude of the
sample used to calculate the moving average: it is kept �xed at 100.

2.4.3 Comparisons between arti�cial and real market : AB.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. BBAgents (5); this breed bases its trading strategy on the sliders:

• nMovingAverage (Section 2.3.1 point 3). It determines the exact value
of the sample used to compute the moving average : it is kept �xed at
20.

• Bandwidth (Section 2.3.1 point 3). It a�ects the width of the Bollinger
bands (explained in Section 2.1.7):: it is kept �xed at 2.

146

Figure 2.20: AV.nlogo : plot of the variable exeprice after 97 ticks

147

Figure 2.21: AT.nlogo : plot of the variable exeprice after 97 ticks

148

Figure 2.22: AB.nlogo : plot of the variable exeprice after 97 ticks.

149

2.4.4 Comparisons between arti�cial and real market : ASL.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. SLAgents (5); this breed bases its trading strategy on the sliders:

• risk-free (Section 2.3.1 point 4). It represents the risk-less rate of
return of the market, necessary to calculate the B-S formula (explained
in Section 2.1.5 point 1) : it is kept �xed to 0.05

• Tsl (Section 2.3.1 point 4). Multiplied by 700, it is the step after which
the option expires, and the strategy is checked: it is kept �xed at 2.

2.4.5 Comparisons between arti�cial and real market : AC.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. CoveredAgents (5); this breed bases its trading strategy on the sliders:

• risk-free (Section 2.3.1 point 5). It is the risk-less rate of return of
the market, this slider is shared with SLAgents.

• Tc (Section 2.3.1 point 5). It a�ects the expire date of the options traded
by CoveredAgents : it is kept �xed at 10. sampleStoch (Section 3.1
point 5). It a�ects the magnitude of the sample considered to calculate
the moving average of CoveredAgents, and the starting point of their
trading strategy : it is kept �xed at 50.

150

Figure 2.23: ASL.nlogo : plot of the variable exeprice after 97 ticks.

151

Figure 2.24: AC.nlogo : plot of the variable exeprice after 97 ticks.

152

2.4.6 Comparisons between arti�cial and real market : ABT.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. BBAgents (5); with sliders:

• nMovingAverage = 20.

• Bandwidth = 2

4. trendAgents (5); with sliders:

• StartingMA = 100.

2.4.7 Comparisons between arti�cial and real market : A-

C-SL.nlogo

It contains the breeds :

1. RandomAgents (100)

2. arbitrageur (1)

3. CoveredAgents (5); with sliders:

• Tc = 10.

• SampleStoch = 50

4. SLAgents (5); with sliders:

• Tsl = 2.

The slider risk-free is the same for both CoveredAgents and SLAgents, it
is equal to 0.05

153

Figure 2.25: ABT.nlogo : plot of the variable exeprice after 90 ticks.

154

Figure 2.26: A-C-SL.nlogo : plot of the variable exeprice after 90 ticks.

155

2.4.8 Comparisons between arti�cial and real market : A-

B-C-T-SL-V.nlogo

As explained in Section 2.3.2, the program A-B-C-T-SL-V.nlogo contains all breeds
of agents included in my thesis.

1. RandomAgents (100)

2. arbitrageur (1)

3. BBAgents (5); with sliders:

• nMovingAverage = 20.

• Bandwidth = 2

4. CoveredAgents (5); with sliders:

• Tc = 10.

• SampleStoch = 50

5. trendAgents (5); with sliders:

• StartingMA = 100.

6. SLAgents (5); with sliders:

• Tsl = 2.

7. VolumeAgents (5); with sliders:

• VolumeAgentStep = 10 .

As forA-C-SL.nlogo, the slider risk-free is shared from both CoveredAgents
and SLAgents ; it is equal to 0.05

The graphs related to Figures 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, can
be compared to the graph generated by the market of Figure 2.3, that is composed
by only one-hundred RandomAgents and one arbitrageur (the basic framework
described in Section 2.2).

But to quantify with more precision the di�erences between the eight arti�cial
markets created so far, we need to use a search algorithm, and we need to de�ne a
�tness function to be minimized or maximized; this is the topic of the next Section.

156

Figure 2.27: A-B-C-T-SL-V : plot of the variable exeprice after 80 ticks.

157

2.5 Optimize Agents Behavior

The categories of trading agents, can in�uence the market price in di�erent ways,
and generates di�erent price trends; the main question is: how can their strategies
drive the market price out of the main benchmark trend, i.e. the Ftse All Share
trend ?

As introduced in Section 2 the variable artificialVSreal, memorizes the
average distance between the arti�cial and the real markets, in absolute value.

This variable is de�ned through the NetLogo command

if j < 10095

[set artificialVSreal artificialVSreal

+ (abs(item 0 SBoxP3 - item 0 realPvec3)) / 10095

set realPvec3 but-first realPvec3]

where 10095 is the length of the vector of real prices, and represents also the
interval of calculation of rtificialVSreal ; realPvec3 is a vector that contains
in the position 0 always the current real price.

artificialVSreal can be used as �tness function, to be minimized by a search
algorithm.

For this purpose I introduce the BehaviorSearch software tool, that can interact
with NetLogo and can try to solve optimization problems using various search
algorithms (their characteristics are described in Chapter); to implement the
analysis of my thesis about the distance between the arti�cial and the real market,
I will use the most popular and �exible search algorithm of Behaviorsearch : the
Genetic Algorithm, (named StandardGA in BehaviorSearch).

But what does it means 'trying' to solve an optimization problem in that
context, i.e. for the programs described in Sections 2.3.1, and 2.3.2?

(Section 1.3.1, 1.3.2, 1.3.3, contains a detailed description of all the steps for
the interaction between NetLogo and BehaviorSearch) brie�y it means to:

1. de�ne the objective of the analysis, i.e. the �tness function; in our case is the
variable artificialVSreal. We can consider it as our dependent variable.

2. De�ne the value of the sliders that are not allowed to variate, and have a
�xed value.

3. De�ne the range of the sliders that are allowed to variate, and to in�uence
the output of the search; they are our independent variables. For this scope
I will de�ne such range case by case.

4. Analyse the results, in terms of dependent variables (the sliders characteris-
ing the trading strategy of each 'intelligent' agent)

158

In general, variables used in an experiment or modelling can be divided into
three types: 'dependent variable', 'independent variable', or other. The 'dependent
variable' represents the output or e�ect, or is tested to see if it is the e�ect. The
'independent variables' represent the inputs or causes, or are tested to see if they
are the cause. Other variables may also be observed for various reasons (in our case
they are the sliders with �xed value, and are useful to characterise the analysed
market structure).

The independent variable can be considered the function for which we want to
solve the optimization problem. In calculus, a function is a map whose action is
speci�ed on variables. Take x and y to be two variables. A function f may map x
to some expression in x. Assigning y = f(x) gives a relation between y and x. If
there is some relation specifying y in terms of x, then y is known as a dependent
variable (and x is an independent variable).

In our case, we are considering a multidimensional space, where the number of
independent variables x1, x2, ..., xn (the sliders), depends on the program chosen
to interact with BehaviorSearch , while the variable artificialVS real is our
independent variable, or our function y = f(x1, x2, ..., xn). The function f is quite
complex, and there are not clear relations between x and y ; for this reason we
cannot �nd analytically the value of artificialVSreal for a certain composition
of sliders: a possible solution can be given through an optimal search with genetic
algorithm.

In order to exploit comparisons between the di�erent market structures de�ned
in Sections 3.1 and 3.2, I will recreate any framework (of the programs AB.nlogo,
AC.nlogo, AV.nlogo, AT.nlogo, ASL.nlogo, ABT.nlogo, A-C-SL.nlogo) using the
program A-B-C-SL-T-V.nlogo (it contains all trading agents categories described
in my thesis): in this way it is possible to change the value of the sliders, without
modify the value of the seed.

2.5.1 Preliminary BehaviorSearch test: the price structure

This section contains a preliminary analysis with BehaviorSearch: the objective is
to study in the basic framework de�ned in Section 2, the optimal value of the �xed
and the �oating components of the variable price, being artificialVSreal the
�tness function .

We have assumed until now a �xed price part equal to 21300 and a �oating
price part equal to a Normal random variable with mean 0 and variance 30.

(Note that de�ning the �oating part in a di�erent ways can lead to di�erent
results).

Remember that the basic framework contains only two breeds of agents: Rando-
mAgents and arbitrageur.

159

Figure 2.28: BehaviorSearch Experiment Editor : search of the optimal values for
the �xed and the variable parts of the price.

The appearance of the BehaviorSearch Experiment Editor can be seen in Figure
2.28.

For what concern the Parameter Specification, we have two �xed values
realted to the sliders nRandomAgents (= 100) and pass-level (= 0.2).

While the proper search space is de�ned by the variables:

1. Volatility_of_the_stochastic_part, it is the �oating part of the price
with range [1 , 150] and step 1.

2. pricefixedcomponent, it is the �xed part of the price; it is allowed to variate
in the interval [15000 , 22000] with step 1.

160

So the magnitude of the search space is equal to 150× 7001 = 105150.
Since I do not know the characteristics of the search space (it is smoothed

or not?), the Search Method Configuration is completed with the StandardGA
custom input parameters.

Another important thing to notice is the fact that the real price is completely
simulated after about 100 ticks; for this reason the Step Limit is set equal to 100
(note that a big value of step runs enlarges the time due for the analysis).

The Evaluation Limit is set equal to 1000.

After ten trials(BehaviorSearch analyses with di�erent seed) I get the following
range of optimal values:

1. Volatility_of_the_stochastic_part, interval [1 , 7], and average about
3;

2. pricefixedcomponent, interval [18400 , 21000], with mean of about 19500.

In this context, the �nal �tness is always of about 75. It means that the distance
per-price between the arti�cial and real markets is of 75 points in the best situation.

If we consider that the mean of the time series of real prices is exactly 21151.576,
then the artificialVSreal variable is about 0.0035 percent of this value.

Moreover the value of artificialVSreal in the worst situation is about 90
units.

After the results of this analysis, I will assume in next Sections, a pricefixed-
component = 19500, and a
Volatility_of_the_stochastic_part = 3
(these values will be kept �xed in next searches).

2.5.2 BehaviorSearch test number 1: VolumeAgents

Market structure composed by

• RandomAgents 100

• arbitrageur 1

• VolumeAgents [1 , 5]

The �rst analysis on the trading agents behavior in the market regards VolumeAg-
ents.
The market analysed in this section is the one explained in Section 3.1 point 1.

This breed invest on the market depending on trading volumes, i.e. the di�erence
between the number of buyers (it is the length of the vector logB) and the sellers
(it is the length of the vector logS) at a given auction mechanism step.

161

Figure 2.29: BehaviorSearch Experiment Editor : search of the optimal behavior
of volume agents.

So their strategy is a�ected mostly by randomness (i.e. by the probabilities of
buy and sell of RandomAgents); the only parameter of the VolumeAgents strategy
that can be used as independent variable to minimize the �tness, is the frequency
of their investments, governed by the slider VolumeAgentStep. The interval of
variation is [1 , 100].

Another slider that is allowed to variate is nVolumeAgents, but only in the
interval [1 , 5].

The total search space size is equal to 101× 5 = 505.
In this framework, the BehaviorSearch Experiment Editor can be seen in Figure

2.29 .

After the implementation of ten trials, we can collect the following results.

162

Seed nVolumeAgents VolumeAgentStep Fitness
100 3 15 70.7
101 2 14 72
102 1 7 68.5
103 4 8 73.4
104 4 7 70.8
105 3 35 76.9
106 4 19 76
107 3 3 72.1
108 3 2 67.9
109 2 21 72.6

Where:

- the average �tness is about 72: it is lower than that observed for the basic
framework, that is about 75 (see Section 5.1);

- the average value of VolumeAgentStep is about 13, but with a big variance;
in fact the interval of values lies in the interval [2 , 35];

- the average number of VolumeAgents is 3.

2.5.3 BehaviorSearch test number 2: trendAgents

Market structure composed by:

• RandomAgents 100

• arbitrageur 1

• trendAgents [1 , 5]

This Section treats the BehaviorSearch analysis of trendAgents investments,
in a the basic framework de�ned in Section 2 .

trendAgents invest in the market according to the value of the current price
with respect to a moving average, calculated on a sample that is di�erent for any
trendAgent (see Section 2.3.1 point 2).

The investment strategy of this breed is a�ected only by the slider StartingMA
: it is proportional to the magnitude of the sample used for the moving average
calculation. it is allowed to variate in the interval [45 , 300].

The other slider that is allowed to variate is nTrendAgents. Its range is de�ned
by the interval [1 , 5].

Indeed the search space size is equal to 254× 5 = 1270.
The BehaviorSearch Experiment Editor can be seen in Figure 2.30.

163

Figure 2.30: BehaviorSearch Experiment Editor : search of the optimal behavior
of trend agents.

164

This breed of agents, seems to have the strongest e�ect on the variable artifi-
cialVSreal. After ten trials we have:

- The average �tness is about 67: it is the lowest with respect to that observed
in the market structures composed by only the basic framework plus one
breed of trading agents;

- the average value of StartingMA is about 160;

- the average number of trendAgents is 4.5, but with a small variance: in fact
the possible values of the slider nTrendAgents are 4 or 5.

The following table shows the results of the BehaviorSearch trials, considering
seeds from 100 to 109.

Seed nTrendAgents StartingMA Fitness
100 4 136 62.6
101 5 274 59.9
102 4 166 66.3
103 5 84 70.1
104 5 208 71.3
105 4 171 66.9
106 4 94 72
107 4 262 69.1
108 5 104 61.9
109 5 95 70.8

2.5.4 BehaviorSearch test number 3: BBAgents

Market structure composed by

• RandomAgents 100

• arbitrageur 1

• BBAgents [1 , 5]

The objective of the analysis of this Section is the search of the optimal
BBAgents sliders values, being artificialVSreal the �tness function. This mar-
ket structure is explained in Section 2.3.1 point 3.

The independent variables that want to consider are the ones characterising
the BBAgents behavior:

165

Figure 2.31: BehaviorSearch Experiment Editor : analysis of the optimal param-
eters of Bollinger bands agents .

1. the slider nMovingAverage ; it is the exact sample that each BBAgent uses
to calculate the moving average. Its range is [5 , 50] with step 1.

2. Bandwidth ; it is necessary to calculate the Bollinger bands, and to de�ne
their width. It ranges from 1 to 5 with step 0.1 .

The last slider that is allowed to variate is nBBAgents, that identi�es the number
of Bollinger agents in the market; its range of variability is [1 , 5] with step 0.1 .

In this framework the size of the search space is equal to
46× 41× 5 = 9430.
Figure 2.31 shows the complete BehaviorSearch Experiment Editor.

BehaviorSearch results very e�cient, and can �nd an optimal solution always
within the �rst 200 model runs.

Considering ten di�erent random seeds, (in the NetLogo program), the �tness
ranges in the interval [68 , 78] with mean of about 73: it seems that adding only

166

the BBAgents breed, the �nal �tness is slightly lower with respect to that observed
for the basic framework (that was of about 75).

The range of the optimal values of the sliders is:
[11 , 49] with mean of about 30 for nMovingAverage;
[1.1 , 4.2] with mean of about 2.5 for Bandwidth;
On average the number of BBAgents that participate to the market is 3; but

the most frequent is 2.
Instead, for what concerns the possible combinations of nMovingaverage and

Bandwidth values, we can have the following cases:

- Quite big value of nMovingaverage, and quite big value of Bandwidth, for
example 31 and 3.3: this case is rare, but it represents a quite stable combi-
nation. In fact in reality the two parameter should be positively correlated.

- Big value of nMovingaverage, and small value of Bandwidth, for example
41 and 1.5: this case is the most frequent in the simulation, but unrealistic.
A low width of the bands should be associated to a very sensitive moving
average, i.e. calculated on a small sample. However these combinations are
very risky, and produce often strongly negative cash �ows.

- Small value of nMovingaverage, and big value of Bandwidth, for example 13
and 3.1. This association is quite frequent, and is quite realistic.

- Small value of both sliders. It is coherent but quite risky. In the simulation
this optimal combination is rare.

However, if we consider the mean (on ten search trials) of these two sliders, we
obtain a rational Bollinger strategy.

The following table shows the data collected from BehaviorSearch , related to
the optimal value of BBAgents sliders, and the corresponding �tness.

Seed nBBAgents MovingAverage Bandwidth Fitness
100 2 11 1.1 73.2
101 4 33 2.4 73.9
102 2 39 1.5 71.2
103 4 18 2.5 73.7
104 2 38 2.8 68.1
105 3 49 1.6 73.3
106 5 31 3.3 76.5
107 1 13 3.1 70.5
108 5 41 1.5 78.3
109 3 23 4.2 70.2

167

2.5.5 BehaviorSearch test number 4: SLAgents

Market structure composed by

• RandomAgents 100

• arbitrageur 1

• SLAgents [1 , 5]

This market structure (described in Section 2.3.1) has been built to study the
investment behavior of SLAgents, in the the basic framework (de�ned in Section
2.2).

This breed of agents uses a stop loss strategy, that involves the calculation of
a call option with the B-S formula (explained in Section 2.1.5); the sliders that
a�ect the SLAgents trading choices are:

1. Tsl; it determines the frequency of the strategy; one unit of the slider is
equivalent to one trading day (500 prices with one minute frequency). Its
range is de�ned by the interval [1 , 10], with step 1.

2. risk-free; it is the risk-less rate of return of the market. Its interval of
variability is [0 , 0.5] with step 0.01 .

Also the number of SLAgents is allowed to variate in the interval [0 , 5], and it is
governed by the slider nSLAgents.

After the de�nition of our independent variables, we are able to calculate the
search space size in this framework; it is equal to 10× 501× 5 = 25050.

The BehaviorSearch Experiment Editor, related to the analysis of the market
structure of this Section, can be seen in Figure 2.32.

The analyses related to ten di�erent frameworks, created by considering seeds
from 100 to 109, lead to the following average values of the sliders involved:

- the average �tness is about 74, so it is slightly less than the �tness reached
for the basic framework (that is equal to 75), computed considering the same
seeds;

- the mean of the Tsl values is about 5 (remember that one unit of this value
corresponds to one trading day, i.e. 500 realisations of the arti�cial market
price);

168

Figure 2.32: BehaviorSearch Experiment Editor : analysis of the optimal param-
eters of Stop Loss agents .

169

Figure 2.33: German bund return in percentage.

- the average risk-less rate is about 0.2: this value seems too high; I expected
a value included in the interval [0.01 % , 0.05 %].

Risk-free interest rate is the theoretical rate of return of an investment with
no risk of �nancial loss.

In practice to work out the risk-free interest rate in a particular situation,
a risk-free bond is usually chosen that is issued by a government or agency
where the risks of default are so low as to be negligible.

An example the bund return trend (from 03/2011 until 17/02/2014) can be
seen in Figure 2.33.

- the average number of SLAgets is 3.4 .

The averages discussed above are related to the data collected in the following
table.

170

Seed nSLAgents Tsl risk-free Fitness
100 4 8 0.32 76.4
101 4 2 0.09 78.1
102 1 2 0.25 73.9
103 4 10 0.08 74.5
104 5 9 0.41 75.5
105 5 9 0.07 70.3
106 2 2 0.12 74.5
107 3 2 0.47 72.8
108 4 5 0.02 72.9
109 2 4 0.15 71.5

2.5.6 BehaviorSearch test number 5: CoveredAgents

Market structure composed by

• RandomAgents 100

• arbitrageur 1

• CoveredAgents [1 , 5]

The characteristics of this framework are the ones explained for the program
AC.nlogo (Section 2.3.1 point 5). This breed of agents has a quite complex trading
strategy (explained in Section 2.1.6), based on options. They can be considered
as a combination of trendAgents and SLAgents (since they base their investment
choices on both, the value of moving average that is di�erent for any trendAgent

and the trade of an option, calculated through the B-S formula).
The sliders that are allowed to variate , and that identify the CoveredAgents

trading strategy, are:

• sampleStoch; it a�ects the magnitude of the sample used to calculate the
moving average, in particular its magnitude is inversely proportional to the
magnitude of this sample. It is allowed to variate in the interval [10 , 90] .

• risk-free; it is the risk-less rate of return of the market. Its interval of
variability is [0 , 0.5] with step 0.01 .

• Tc; it determines the frequency of the trading strategy of CoveredAgents.
Its range is [1 , 50].

The last independent variable of this framework, is represented by the slider
nCoveredAgents, that can range in the interval [1 , 5].

The search space size for this market structure is equal to

171

Figure 2.34: BehaviorSearch Experiment Editor : analysis of the optimal param-
eters of Covered agents .

81× 501× 50× 5 = 10145250.

The related BehaviorSearch Experiment Editor can be seen in Figure 2.34 .

The data collected from the BehaviorSearch analyses are reported in the fol-
lowing table.

172

Seed nCoveredAgents Tc SampleStoch risk-free Fitness
100 5 15 13 0.11 75.3
101 3 18 39 0.37 63.2
102 5 20 35 0.24 68.7
103 4 28 56 0.48 71.2
104 3 47 25 0.47 72
105 3 10 34 0.5 68
106 4 22 84 0.4 74.3
107 3 18 29 0.47 71.5
108 2 35 15 0.45 70.6
109 4 15 12 0.15 70.9

Where:

- the average �tness is about 71;

- the average frequency of the CoveredAgents strategy, measured through Tc,
is 23;

- the means of the ten risk-free realisations is 0.36: this number is too high
and unrealistic, as discussed in section 5.5 .

- the average value of SampleStoch is equal to about 34 (remember that this
value is inversely proportional to the magnitude of the sample used to cal-
culate the moving average).

- the average number of CoveredAgents participating to the market is equal
to 4.

2.5.7 BehaviorSearch test number 6: trendAgents + BBAgents

In this Section I consider a market structure composed by the basic framework
plus both trendAgents and CoveredAgents.

The main objective is to study the aggregate e�ect on the arti�cial market, of
the breeds of agents that base their strategy on technical analysis.

Each BehaviorSearch analysis is implemented considering the breeds of trading
agents individually.

It means that a �rst analysis is made on trendAgents optimal sliders value,
keeping �xed the values of BBAgents parameters; a second analysis is made vice-
versa.

The value that are kept �xed for BBAgents and trendAgents respectively, are
those obtained with previous analyses of Sections 2.5.3 and 2.5.4 (from seed 100
to seed 109).

173

Analysis on trendAgents parameters keeping �xed BBAgents parame-
ters

Market structure composed by:

• RandomAgents 100

• arbitrageur 1

• BBAgents are set up with the sliders values reported in the table of Section
5.4 (from seed 100 to 109).

• trendAgents [1 , 5]

The details on the market structure created with the description of the trading
agents categories can be found in Section 3.2 point 1.

The analysis implemented for trendAgents will be then compared to that of
Sections 5.3, 5.4 (reported in the corresponding table).

The BehaviorSearch Experiment Editor maintains almost the same character-
istics of those showed in previous Sections (Figures 2.28, 2.29, 2.30, 2.31, 2.32,
2.34); the only part that changes is the Parameter Specification, that variates
according to the seed considered.

An example can be seen in Figure 2.35 , that shows the Parameter Specifica-

tion for seed = 100.

The results of the analysis on trendAgents, with �xed parameters values of
BBAgents, are reported in the following table.

Seed nTrendAgents StartingMA Fitness
100 4 193 68
101 5 233 69.5
102 4 189 64.8
103 4 125 73.8
104 2 92 68.9
105 2 78 67.8
106 3 136 70.1
107 5 62 70.3
108 3 97 57.6
109 2 206 67.4

An important thing to notice is the fact that the analyses of this Section start
from the optimal framework generated by BBAgents, whose optimal parameters
have been collected in the table of Section 5.4 .

174

Figure 2.35: Parameters Speci�cation : search of the optimal parameters of trend
agents, with Bollinger agents parameters �xed .

175

For this purpose it is interesting to compare the new optimal parameters of
trendAgents with the previous ones, i.e. those obtained without BBAgents con-
straints.

While the new values of �tness can be compared to those of both tables of
Sections 2.5.3, 2.5.4 .

The new optimal parameters of trendAgents, have the following expected
values:

- average �tness equal to 67.8: it is lower than the one observed in Section 5.3
(72), that considers the framework created by the program AB.nlogo; it is
slightly bigger than the one observed in Section 2.5.4 (67.1), that is obtained
analysing the framework created by the program AT.nlogo.

- the average number of trendAgents is 3.5; it is less than in the case without
BBAgents,(Section 2.5.4, with average number of trendAgents equal to 4.5).

- the mean of the collected values of StartingMA is 141; it is less than the case
of Section 2.5.3 that presented an average of about 160.

Analysis on BBAgents parameters keeping �xed trendAgents parame-
ters

Market structure composed by:

• RandomAgents 100

• arbitrageur 1

• trendAgents are set up with the sliders values reported in the table of Sec-
tion 2.5.3 (from seed 100 to 109).

• BBAgents [1 , 5]

The details on the market structure created with the description of the trading
agents categories can be found in Section 2.3.2 point 2.

The table that shows the results of the BBAgents sliders values, constrained
to trendAgents (with sliders value collected in the table of Section 2.5.3), is the
following.

176

Seed nBBAgents MovingAverage Bandwidth Fitness
100 2 31 1.6 65.1
101 4 19 1.6 65.5
102 3 39 1 67.3
103 4 43 5.1 68
104 1 10 1.2 70.2
105 3 29 3 67
106 2 46 3.9 69.4
107 4 30 2.5 72.2
108 4 28 2.4 70.2
109 4 37 3.9 67.5

Comparing the table above with the table of Section 5.4, we can note:

- the average �tness is about 68.2; so it is lower than that observed without
trendAgents constraints (that is about 73).

However it is bigger than the one obtained in a market composed by only
trendAgents, in which the average �tness measures 67.1.

- The average values of the sliders nMovingAverage and Bandwidth are very
close to those observed analysing the framework created by the program
AB.nlogo (in some trials they have exactly the same): they measure 31
and 2.6 respectively, while those observed in Section 2.5.4 are 30 and 2.5
respectively .

- The average number of BBAgents is 3, it is the same of that observed in the
case of Section 2.5.4 .

2.5.8 BehaviorSearch test number 7: SLAgents + CoveredA-

gents

This Section follows the same guidelines of Section 2.5.7: the optimal behavior of
SLAgents and CoveredAgents is analysed individually.

The values of the trading agents sliders that are kept �xed during the optimal
search can be seen in the tables of Sections 2.5.5, 2.5.6 .

The slider risk-free will be allowed to variate in both cases described in
Sections 2.5.8 (points 1 and 2) because the major part of results collected for this
slider in Sections 2.5.5, 2.5.6 were very unrealistic.

177

Analysis on SLAgents parameters keeping �xed CoveredAgents param-
eters

This Section analyses the optimal behavior of SLAgents, in the framework charac-
terising the program A-C-SL.nlogo : the parameter kept �xed for CoveredAgents
are the ones collected in the table of Section 2.5.6 .

Brie�y this market structure contains the following breeds:

• RandomAgents 100

• arbitrageur 1

• CoveredAgents : the number variates depending on the value of nSLAgents
in the table of Section 2.5.6.

• SLAgents [1 , 5]

The results of the BehaviorSearch analysis can be seen in the following table.

Seed nSLAgents Tsl risk-free Fitness
100 4 4 0.41 79.9
101 1 2 0.01 71.7
102 3 3 0.28 81.2
103 4 3 0.16 68.7
104 3 6 0.35 78.2
105 1 3 0.2 78.2
106 3 5 0.16 79.2
107 4 3 0.46 72.2
108 5 3 0.41 71.4
109 1 2 0.04 74.3

The expected value of the sliders collected above is:

- about 3 for Tsl values ; so the strategy, in this case, is more frequent than
in the case of Section 2.5.5, whose average is 5.

- about 3 for nSLAgents ; this average is exactly equal to that observed in
Section 2.5.5.

the average �tness measures 75.5: it is bigger than both the cases of Sections 2.5.1
and 2.5.5, that are related to markets composed by respectively no trading agents,
and by only SLAgents (with average �nesses of 75 and 74).

178

Analysis on CoveredAgents parameters keeping �xed SLAgents param-
eters

This Sections analyses the opposite situation with respect to Section 2.5.8 point 1
: here we are searching the optimal parameters of CoveredAgents, having those
of SLAgents �xed.

The values of the sliders characterising the investment strategy of SLAgents
are the optimal ones, collected in the table of Section 2.5.5 .

In this way we get the following combination of agents in the market.

• RandomAgents 100

• arbitrageur 1

• SLAgents the number variates depending on the value of nSLAgents in the
table of Section 2.5.6.

• CoveredAgents [1 , 5]

The BehaviorSearch analysis reached the following results.

Seed nCoveredAgents Tc SampleStoch risk-free Fitness
100 2 16 95 0.42 71.3
101 4 17 26 0.01 70.5
102 1 8 32 0.32 69.4
103 1 5 40 0.1 73.3
104 2 39 74 0.21 71.2
105 1 17 82 0.35 71
106 2 12 58 0.15 71.9
107 2 40 97 0.06 71.6
108 2 15 20 0.12 67.7
109 2 16 67 0.49 74.4

Comparing the table above with that of Section 2.5.6 we can note:

- the average �tness is about 71 as measured in the case characterised by only
the CoveredAgents breed.

It is also less than both cases of Sections 2.5.5 (with only SLAgents and
�tness equal to about 74), and 2.5.8 point 1 (with SLAgents constrained to
CoveredAgents optimal parameters, �tness equal to 75.5).

- Inserting the SLAgents category, the average frequency of the strategy is
smaller: it is equal to about 19 instead of 23.

179

- The average value of the slider SampleStoch is bigger with respect to the
one reached in Section 2.5.6 (59 instead of 34). It means that on average, the
time required to start the trading strategy of each CoveredAgents is lower
if there are the SLAgents constraints.

- The mean of the slider nCoveredAgents is 2 instead of 4.

2.5.9 BehaviorSearch test number 8: all trading agents breeds

The objective of this Section is to study the investment behavior of each trading
agent breed individually, in the framework described by the program A-B-C-SL-
T-V.nlogo.

For this purpose I will consider as �xed parameters for the sliders of the agents,
that are out of the focus of the search, those collected in the tables of Sections
2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6 .

The following table contains all data collected in previous analyses, related to
the optimal sliders values of each trading agents.

SEED 100 101 102 103 104 105 106 107 108 109
nBBAgents 2 4 2 4 2 3 5 1 5 3
nMovingAverage 11 33 39 18 38 49 31 13 41 23

Bandwidth 1.1 2.4 1.5 2.5 2.8 1.6 3.3 3.1 1.5 4.2
StartingMA 136 274 166 84 208 171 94 262 104 95
nTrendAgents 4 5 4 5 5 4 4 4 5 5
nVolumeAgents 3 2 1 4 4 3 4 3 3 2
VolumeAgentStep 15 14 7 8 7 35 19 3 2 21
nSLAgents 4 4 1 4 5 5 2 3 4 2

Tsl 8 2 2 10 9 9 2 2 5 4
nCoveredAgents 5 3 5 4 3 3 4 3 2 4

Tc 15 18 20 28 47 10 22 18 35 15
SampleStoch 13 39 35 56 25 34 84 29 15 12

These values are the optimal ones of each breed, obtained analysing the frame-
works de�ned by the programsAV.nlogo, AT.nlogo, AB.nlogo, AC.nlogo, A-SL.nlogo
(described in Sections 2.3.1, 2.3.2).

Moreover, to be consistent with reality I will not consider as variable parameter,
the value of risk-free, because previous BehaviorSearch analyses lead to too big
values of the slider. For this reason its value will be kept �xed at 0.01 (to be
consistent with the graph of Figure 2.33).

180

The ranges of variability of each slider, that de�ne the search space conforma-
tion, are overall showed in Figure 2.36 .

Next Sections are organised in the following way:

1. summary of the breeds participating in the market analysed, and their num-
ber;

2. table containing the value of the sliders optimized, and the �tness: each table
contains ten trials, implemented for seeds from 100 to 109;

3. calculation of the expected value for each parameter reported in the tables,
and for the �tness (case by case).

The results of point 3 together with those of Sections 2.5.2, 2.5.3, 2.5.4, 2.5.5,
2.5.6, 2.5.7, 2.5.8, will be then compared in Chapter 3 (Conclusions).

Analysis on VolumeAgents optimal parameters keeping �xed all the
remaining trading agents parameters

The market structure is composed by:

• RandomAgents 100

• arbitrageur 1

• Volumeagents [1 , 5]

• trendAgents the number variates depending on the value of nTrendAgents
in the table of Section 2.5.3.

• BBAgents the number variates depending on the value of nBBAgents in the
table of Section 2.5.4.

• CoveredAgents the number variates depending on the value of nCoveredAgents
in the table of Section 2.5.5.

• SLAgents the number variates depending on the value of nSLAgents in the
table of Section 2.5.6.

181

Figure 2.36: Parameters Speci�cation : ranges of all parameters involved in the
simulation; they will be analysed individually according to the trading agents
breed, keeping all the remaining values �xed.

182

The BehaviorSearch results about VolumeAgents investment behavior in this mar-
ket structure, are reported in the following table.

Seed nVolumeAgents VolumeAgentStep Fitness
100 2 11 67.4
101 1 15 74.9
102 2 50 69.2
103 4 6 77.9
104 3 36 75.9
105 3 30 80.4
106 1 19 80.4
107 4 6 73.8
108 5 17 74.5
109 1 9 79.6

Mean 3 20 75.4

Analysis on trendAgents optimal parameters keeping �xed all the re-
maining trading agents parameters

The market structure is composed by:

• RandomAgents 100

• arbitrageur 1

• Volumeagents the number variates depending on the value of nVolumeAgents
in the table of Section 2.5.2 .

• trendAgents [1 , 5]

• BBAgents the number variates depending on the value of nBBAgents in the
table of Section 2.5.4 .

• CoveredAgents the number variates depending on the value of nCoveredAgents
in the table of Section 2.5.5 .

• SLAgents the number variates depending on the value of nSLAgents in the
table of Section 2.5.6 .

The BehaviorSearch results about trendAgents investment behavior in this mar-
ket structure, are reported in the following table.

183

Seed nTrendAgents StartingMA Fitness
100 1 71 72.6
101 5 63 72.9
102 1 113 73.2
103 4 195 77.6
104 1 140 74.3
105 3 144 77
106 3 116 73.8
107 4 104 71.2
108 2 70 71.9
109 4 299 76

Mean 3 132 74

Analysis on BBAgents optimal parameters keeping �xed all the remain-
ing trading agents parameters

The market structure is composed by:

• RandomAgents 100

• arbitrageur 1

• Volumeagents the number variates depending on the value of nVolumeAgents
in the table of Section 2.5.2 .

• trendAgents the number variates depending on the value of nTrendAgents
in the table of Section 2.5.3.

• BBAgents [1 , 5]

• CoveredAgents the number variates depending on the value of nCoveredAgents
in the table of Section 2.5.5.

• SLAgents the number variates depending on the value of nSLAgents in the
table of Section 2.5.6.

The BehaviorSearch results about BBAgents investment behavior in this market
structure, are reported in the following table.

184

Seed nBBAgents MovingAverage Bandwidth Fitness
100 4 9 4 72.5
101 3 41 4.6 73.9
102 3 21 1.7 68.9
103 3 47 2.6 76.1
104 1 46 3.9 75.8
105 3 37 1.5 75.2
106 2 45 2.8 70.3
107 2 23 2.4 69.4
108 4 19 3.2 72.2
109 3 43 2.4 72.7

Mean 3 33 2.9 72

Analysis on SLAgents optimal parameters keeping �xed all the remain-
ing trading agents parameters

The market structure is composed by:

• RandomAgents 100

• arbitrageur 1

• Volumeagents the number variates depending on the value of nSLAgents in
the table of Section 2.5.2 .

• trendAgents the number variates depending on the value of nTrendAgents
in the table of Section 2.5.3 .

• BBAgents the number variates depending on the value of nBBAgents in the
table of Section 2.5.4 .

• CoveredAgents the number variates depending on the value of nCoveredAgents
in the table of Section 2.5.5 .

• SLAgents [1 , 5]

The BehaviorSearch results about SLAgents investment behavior in this market
structure, are reported in the following table.

185

Seed nSLAgents Tsl Fitness
100 1 9 79.7
101 4 1 81
102 2 3 77.3
103 4 10 82.5
104 4 6 80
105 5 6 79.3
106 5 7 78.8
107 2 2 70.6
108 5 3 80.1
109 4 2 76.3

Mean 4 4 78.5

Analysis on CoveredAgents optimal parameters keeping �xed all the
remaining trading agents parameters

The market structure is composed by:

• RandomAgents 100

• arbitrageur 1

• Volumeagents the number variates depending on the value of nVolumeAgents
in the table of Section 2.5.2.

• trendAgents the number variates depending on the value of nTrendAgents
in the table of Section 2.5.3.

• BBAgents the number variates depending on the value of nBBAgents in the
table of Section 2.5.4.

• CoveredAgents [1 , 5]

• SLAgents the number variates depending on the value of nSLAgents in the
table of Section 2.5.6.

The BehaviorSearch results about CoveredAgents investment behavior in this
market structure, are reported in the following table.

186

Seed nCoveredAgents Tc SampleStoch Fitness
100 1 9 29 72.1
101 5 26 13 71.8
102 1 26 13 69.8
103 4 21 30 77
104 1 14 55 73.2
105 2 16 41 77.6
106 2 18 26 70.7
107 3 15 17 71.5
108 3 10 29 75
109 4 17 58 69.3

Mean 3 16 37 72.8

2.6 Statistical tests with R upon results

BehaviorSearch allows a very big range of possible analyses, if we consider the
arti�cial market structures de�ned so far.

In particular, my scope is that of studying the di�erence in term of average
�tness (artificialVSreal), between the di�erent breeds, and to analyse the
possible changes in the investment strategy of any category of trading agents in
various market conditions.

So we can say that my work is mainly focused on the individual e�ect of the
breed, instead of analysing the optimal behavior of all classes of agents together;
this because it is more di�cult to interpret the results in a complex multivariate
space, with a lot of independent variables.

To pursuit my objective and comment the �tness results reached in Section 5,
I will use the following statistical tests:

1. One-way ANOVA test to compare the average �tnesses of the market struc-
tures with only one trading agent breed ; it means to compare the average
distance between arti�cial and real markets for the �ve groups:

(a) VolumeAgents, in the framework de�ned by the program AV.nlogo.

(b) trendAgents, in the framework de�ned by the program AT.nlogo.

(c) BBAgents, in the framework de�ned by the program AB.nlogo.

(d) SLAgents, in the framework de�ned by the program A-SL.nlogo.

(e) CoveredAgents, in the framework de�ned by the program AC.nlogo.

2. Linear regression to study the relationships (correlations) between the trad-
ing behavior of any breed alone in the basic framework (Randomagents +

187

arbitrageur) and the one of the same breeds, constrained (framework de-
�ned by the programs ABT.nlogo, A-C-SL.nlogo, A-B-C-SL-T-V.nlogo).

The statistical tests are related to the following data.

• Collection of the �tnesses observed in Sections 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6
(unconstrained market).

TABLE-1

Seed VolumeAgents trendAgents BBAgents SLAgents CoveredAgents

100 70.7 62.6 73.2 76.4 75.3
101 72 59.9 73.9 78.1 63.2
102 68.5 66.3 71.2 73.9 68.7
103 73.4 70.1 73.7 74.5 71.2
104 70.8 71.3 68.1 75.5 72
105 76.9 66.9 73.3 70.3 68
106 76 72 76.6 74.5 74.3
107 72.1 69.1 70.5 72.8 71.5
108 67.9 61.9 78.3 72.9 70.6
109 72.6 70.8 70.2 71.5 70.9

Mean 72.1 67.1 72.9 74 70.6

• Collection of the �tnesses observed in Sections 2.5.9, points 1 to 5 (con-
strained to all breeds market) .

TABLE-2

Seed VolumeAgents trendAgents BBAgents SLAgents CoveredAgents

100 67.4 72.6 72.5 79.7 72.1
101 74.9 72.9 71.1 81 71.8
102 69.2 73.2 68.9 77.3 69.8
103 77.7 77.6 76.1 82.5 77
104 75.9 74.3 75.8 80 73.2
105 80.4 77 75.2 79.3 77.6
106 80.4 73.8 70.3 78.8 70.7
107 73.8 71.2 69.4 70.6 71.5
108 74.5 71.9 72.2 80.1 75
109 79.6 76 72.7 76.3 69.3

Mean 75.5 74.1 72.4 78.6 72.8

188

• Collection of the �tnesses observed in Sections 2.5.7, 2.5.8 (constrained to
one breed markets).

TABLE-3

Seed trendAgents BBAgents SLAgents CoveredAgents

100 68 65.1 79.9 71.3
101 69.5 65.5 71.7 70.5
102 64.8 67.3 81.2 69.4
103 73.8 68 68.7 73.3
104 68.9 70.2 78.2 71.2
105 67.8 67 78.2 71
106 70.1 69.4 79.2 71.9
107 70.3 72.2 72.2 71.6
108 57.6 70.2 71.4 67.7
109 64.4 67.5 74.3 74.4

Mean 67.8 68.2 75.5 71.2

2.6.1 ANOVA test on the �tness results of agents breeds

Analysis of variance (ANOVA) is a collection of statistical models used to analyse
the di�erences between group means and their associated procedures (such as
"variation" among and between groups). In ANOVA setting, the observed variance
in a particular variable is partitioned into components attributable to di�erent
sources of variation. In its simplest form, ANOVA provides a statistical test of
whether or not the means of several groups are equal, and therefore generalizes the
t-test to more than two groups. Doing multiple two-sample t-tests would result
in an increased chance of committing a type I error. A type I error, also known
as an error of the �rst kind, occurs when the null hypothesis (H0) is true, but
is rejected. It is asserting something that is absent, a false hit. A type I error
may be compared with a so-called false positive (a result that indicates that a
given condition is present when it actually is not present) in tests where a single
condition is tested for.

For this reason, ANOVAs are useful in comparing (testing) three or more means
(groups or variables) for statistical signi�cance.

The normal-model based ANOVA analysis assumes the Independence of obser-
vations, Normality of residuals, and the homogeneity of variances.

ANOVA is a particular form of statistical hypothesis testing heavily used in the
analysis of experimental data. A statistical hypothesis test is a method of making
decisions using data. A test result (calculated from the null hypothesis and the
sample) is called statistically signi�cant if it is deemed unlikely to have occurred

189

by chance, assuming the truth of the null hypothesis. A statistically signi�cant
result (when a probability (p-value) is less than a threshold (signi�cance level))
justi�es the rejection of the null hypothesis, but only if the a priori probability
of the null hypothesis is not high. In the typical application of ANOVA, the null
hypothesis is that all groups are simply random samples of the same population.
This implies that all treatments have the same e�ect (perhaps none). Rejecting
the null hypothesis implies that di�erent treatments result in altered e�ects.

In our context the ANOVA test is implemented on the samples collected in
TABLE-1 (I will consider that all the assumptions to implement the test are met) :
the null hypothesis, denoted H0, for the overall F-test for this experiment would be
that all �ve levels of the factor (�tnesses related to VolumeAgents, trendAgents,
BBAgents, SLAgents, CoveredAgents) produce the same response, on average. To
calculate the F-ratio we must follow the steps:

1. Calculate the mean within each group.

E(Fitvolume) = 72.1

E(Fittrend) = 67.1

E(FitBB) = 72.9

E(FitSL) = 74

E(Fitcovered) = 70.6

where:

- E(Fitvolume) is the average �tness analysed the framework de�ned by
the program AV.nlogo

- E(Fittrend) is the average �tness analysed the framework de�ned by the
program AT.nlogo

- E(FitBB) is the average �tness analysed in the framework de�ned by
the program AB.nlogo

- E(FitSL) is the average �tness in analysed the framework de�ned by
the program ASL.nlogo

- E(Fitcovered) is the average �tness analysed the framework de�ned by
the program AC.nlogo

2. Calculate the overall mean.

E(FitTOT) = 1
5
× (72.1 + 67.1 + 72.9 + 74 + 70.6) = 71.3

190

3. Calculate the "between-group" sum of squares:

SB = 10 × [(E(Fitvolume) − E(FitTOT))2 + (E(Fittrend) − E(FitTOT))2 +
(E(FitBB) − E(FitTOT))2 + (E(FitSL) − E(FitTOT))2 + (E(Fitcovered) −
E(FitTOT))2] =

10× [(71.2− 71.3)2 + (67.1− 71.3)2 + (72.9− 71.3)2 + (74− 71.3)2 + (70.6−
71.3)2] = 279.9

The between-group degrees of freedom is one less than the number of groups.

fB = 5− 1 = 4

The between-group mean square value is equal to

MSB = SB

fB
= 279.9

4
∼= 70

4. Calculate the "within-group" sum of squares.

The within-group sum of squares is the sum of squares of all 50 values of
TABLE-1.

SW = 478.3

The within-group degrees of freedom is

fW = number of samples × (number of values in each sample - one)

= 5 (10 - 1) = 45

Thus the within-group mean square value is equal to

MSW = SW

fW
= 478.3

45
= 10.6

5. The F-ratio is:

F = MSB

MSW
= 70

10.6
∼= 6.6

The critical value is the number that the test statistic must exceed to reject
the test. In this case, Fcrit(fb, fW) = F (4, 45) ∼= 2.65 at α = 0.05. The p-value is
about 0.0003.

Since F = 6.6 > 2.65, the results are signi�cant at the 5% signi�cance level.
One would reject the null hypothesis, concluding that there is strong evidence that
the expected values in the three groups di�er.

After performing the F-test, it is possible to carry out some "post-hoc" analysis
of the group means. In this case the standard error is equal to√

10.6
10

+ 10.6
10

+ 10.6
10

+ 10.6
10

= 2.06;

it means that there is no evidence that results produced by VolumeAgents,
BBAgents and SLAgents have di�erent population means from each other, as their
mean di�erence is comparable to the standard error. The same happens within
VolumeAgents, BBAgents and CoveredAgents.

191

2.6.2 Linear regressions between unconstrained �tness of

breeds and constrained �tness of breeds

In statistics, linear regression is an approach to modeling the relationship between
a scalar dependent variable y and one or more explanatory variables denoted X.
The case of one explanatory variable is called simple linear regression.

Simple linear regression is the least squares estimator of a linear regression
model with a single explanatory variable. In other words, simple linear regression
�ts a straight line through the set of n points in such a way that makes the sum
of squared residuals of the model (that is, vertical distances between the points of
the data set and the �tted line) as small as possible.

The slope of the �tted line is equal to the correlation between y and x corrected
by the ratio of standard deviations of these variables. The intercept of the �tted
line is such that it passes through the center of mass (x, y) of the data points.

In this Section, linear regression is implemented on the di�erent �tnesses of the
same breeds of agents, obtained considering di�erent frameworks: for this purpose
the data considered are those collected in TABLE-1, TABLE-2, and TABLE-3.

Linear regressions on �tnesses collected in TABLE-1 and TABLE-2

In this Section the frameworks composed by only one breed of intelligent agents is
compared to those composed by all categories of trading agents.

Brie�y they are:

• VolumeAgents : comparison between frameworks de�ned by programsAV.nlogo
and A-B-C-SL-T-V.nlogo; the linear regression is implemented with the data
of the �rst column of TABLE-1 and the �rst column of TABLE-2.

• trendAgents : comparison between frameworks de�ned by programsAT.nlogo
and A-B-C-SL-T-V.nlogo; the linear regression is implemented with the data
of the second column of TABLE-1 and the second column of TABLE-2.

• BBAgents : comparison between frameworks de�ned by programs AB.nlogo
and A-B-C-SL-T-V.nlogo; the linear regression is implemented with the data
of the third column of TABLE-1 and the third column of TABLE-2.

• SLAgents : comparison between frameworks de�ned by programs ASL.nlogo
and A-B-C-SL-T-V.nlogo; the linear regression is implemented with the data
of the fourth column of TABLE-1 and the fourth column of TABLE-2

• CoveredAgents : comparison between frameworks de�ned by programsAC.nlogo
and A-B-C-SL-T-V.nlogo; the linear regression is implemented with the data
of the �fth column of TABLE-1 and the �fth column of TABLE-2.

192

For each case a linear regression, a t-test and an F-test (the same necessary for
the ANOVA), are implemented with R.

R is a free software programming language and software environment for sta-
tistical computing and graphics.

The t-test and the F-test are useful to check the statistical consistency of the
coe�cient characterising the regression, i.e. the intercept and the slope of the line
respectively.

The generic code that permits these analyses in R is the following.

x = c()

y = c()

plot(x, y, main="tradingAgents", xlab=" xaxis",ylab="yaxis",

volumes ", pch=19)

abline(lm(x~y), col="red")

model = lm(formula = x ~ y, x=TRUE, y=TRUE)

model

summary(model)

Where the commands c() de�nes the vector (in this case related to the inde-
pendent and dependent variables); abline() draws the line of the regression; lm
implements the linear regression; summary reports the results of the Fisher test.

CASE 1 : VolumeAgents

The results on the R console are can be seen in Figure 2.37.

The correlation coe�cient is about 0.74: the two �tnesse are strongly corre-
lated.

The coe�cient of determination, denoted R2 is equal to 0.54: it indicates
how well data points �t the statistical model; in this case it is quite big.

The results of the F-statistics and the t-statistic, are signi�cant in a con�-
dence interval of 95%, since the p-value is equal to 0.014, that is less than
0.05; it means that the intercept and the slope are consistent with the model
(and they are statistically di�erent from zero).

Figure 2.38 reports the line of the regression.

193

Figure 2.37: VolumeAgents: results of the regression

CASE 2 : trendAgents

The results of the linear regression on �tness values of trendAgents can be
seen in Figure 2.39.

The correlation coe�cient is about 0.45: there is a quite strong dependence
between the two �tnesses.

The results, of the F-test and the t-test, provide a p-value of 0.1894 and 0.997
respectively: it means that both the intercept and the slope of the line, are
not statistically di�erent from zero, considering a con�dence interval of 95%
(moreover the standard error is big with respect to the intercept and the
slope of the curve).

Indeed the model does not �t well on a linear regression, and the R-squared
is of about 0.2 (it is quite small).

The information showed in Figure 2.39, if traduced into plot, produce a line
that almost coincides with the x-axis.

CASE 3 : BBAgents

The results on BBAgents, reported in the R console, can be seen in Figure
2.40.

194

Figure 2.38: VolumeAgents: graph of the regression

195

Figure 2.39: trendAgents: results of the regression

Figure 2.40: BBAgents: results of the regression

196

The correlation coe�cient is about - 0.14: it is a low negative correlation
between the two �tnesses considered for BBAgnets.

The t-statistics on the intercept of the curve, leads to reject the null hypoth-
esis of an equal to zero intercept, in a con�dence interval of 95% : in fact
the p-value is equal to 0.02.

Instead, the F-statistics provides a curve slope not statistically di�erent from
zero: so the slope value reported (0.6982) is not signi�cant (moreover it is
lower than the standard error, equal to 3.203).

The percentage of model explained by the regression, is equal to -0.0198: it
is very small.

The plot of the regression on BBAgents di�erent levels of �tness, is showed
in Figure 2.41.

The linear regression does not work particularly well on BBAgents �tness;
moreover the correlation between the two �tnesses is quite small.

CASE 4 : SLAgents

The R console produced for SLAgents case, the results reported in Figure
2.42.

The correlation coe�cient is equal to about 0.4 (quite strong dependence of
the two �tnesses).

The R-squared is equal to 0.1658: indeed the percentage of model explained
is 16.58%.

As in BBAgents case, the t-statistic provides a signi�cantly di�erent from
zero intercept (p-value = 0.019 < 0.05); but the F-statistic leads to a non
statistically signi�cant slope (lower than the standard error).

The plot of the regression can be seen in Figure 2.43.

However, di�erently from Figure 2.43, the correct representation of the linear
regression curve is not clear, given the fact that the value of the slope is not
signi�cant.

197

Figure 2.41: BBAgents: plot of the regression

198

Figure 2.42: SLAgents: results of the regression

CASE 5 : CoveredAgents

The results reached through the R analysis are reported in Figure 2.44.

The correlation coe�cient is equal to about -0.11 : it is quite low, indeed
there is a low degree of dependence between the two �tnesses of CoveredAgents.

The intercept is statistically di�erent from zero: the t-test provides a con�-
dence level of 1 - 0.0297 = 0.9703 > 0.95.

The slope of the curve is not statistically di�erent from zero: the F-statistic
has a con�dence interval of 1 - 0.7649 = 0.2351 < 0.95.

The R-squared is equal to 0.01163: less than the 2% of the total variation of
outcomes is explained by the model.

The plot of the regression is showed in Figure 2.45.

Case 1 �ts the best on linear regression, while case 2 �ts the worst. The
remaining cases, i.e. case 3, case 4 and case 5, have non statistically signi�cant
slopes, meaning that the lines of the regression are almost parallel to the x-axis.

199

Figure 2.43: SLAgents: plot of the regression

200

Figure 2.44: CoveredAgents: results of the regression

Linear regressions on �tnesses collected in TABLE-1 and TABLE-3

In this Section the frameworks composed by only one breed of intelligent agents is
compared to those composed by two categories of trading agents.

Brie�y they are:

• trendAgents : comparison between frameworks de�ned by programsAT.nlogo
and ABT.nlogo; the linear regression is implemented with the data of the
�rst column of TABLE-1 and the second column of TABLE-3.

• BBAgents : comparison between frameworks de�ned by programs AB.nlogo
and ABT.nlogo; the linear regression is implemented with the data of the
third column of TABLE-1 and the second column of TABLE-3.

• SLAgents : comparison between frameworks de�ned by programs ASL.nlogo
and A-C-SL.nlogo; the linear regression is implemented with the data of the
fourth column of TABLE-1 and the third column of TABLE-3.

• CoveredAgents : comparison between frameworks de�ned by programsAC.nlogo
and A-C-SL.nlogo; the linear regression is implemented with the data of the
�fth column of TABLE-1 and the fourth column of TABLE-3.

The statistical analyses of this Section are implemented in R, as happened in
previous Section.

CASE 6.1 : trendAgents constrained to BBAgents

The R console results are reported in Figure 2.46; while the plot of the line
of the regression is showed in Figure 2.47

201

Figure 2.45: CoveredAgents: plot of the regression

202

Figure 2.46: trendAgents constrained to BBAgents: results of the regression

Looking at Figure 2.46, we can note that both intercept and slope are not
statistically di�erent from zero, since both t-test and F-test provide p-values
bigger than 0.05 (0.146 and 0.162 respectively).

As happened in CASE 2, the linear regression is not a consistent model for
such kind of data, since the standard error is too big.

The two �tnesses considered are positively correlated, with correlation coef-
�cient equal to -0.4787.

CASE 6.2 : BBAgents constrained to trendAgents

The R console results are reported in Figure 2.48; while the plot of the line
of the regression is showed in Figure 2.49

The correlation coe�cient is equal to 0.078: it means that the two �tnesses
are weakly dependent.

The intercept is statistically di�erent from zero (t-test with p-value 0.0402),
while the slope is not statistically di�erent from zero (F-test with p-value
0.8298).

203

Figure 2.47: trendAgents constrained to BBAgents: plot of the regression

204

Figure 2.48: BBAgents constrained to trendAgents: results of the regression

CASE 7.1 : SLAgents constrained to CoveredAgents

The analysis with R reached the results reported in Figure 2.50 ; while the
plot of the regression can be seen in Figure 2.51 .

The two �tnesses are almost independent, since the correlation coe�cient is
equal to 0.0178 .

The intercept is signi�cant, as proved by the t-test with a p-value of 0.000757;
the slope is very close to zero, and not statistically di�erent from zero, since
the F-statistic reached a p-value of 0.960979.

As showed in Figure 2.51, the line is almost parallel to the x-axis.

CASE 7.2 : CoveredAgents constrained to SLAgents

The results related to this case, given by R, are showed in Figure 2.52 .

The plot of the regression can be seen in Figure 2.53 .

205

Figure 2.49: BBAgents constrained to trendAgents: plot of the regression

206

Figure 2.50: SLAgents constrained to CoveredAgents: results of the regression

The coe�cient of the regression is equal to about 0.2586.

Both the t-test and the F-test, provide a not statistically di�erent from zero
coe�cients of the regression (p-values of 0.429 and 0.471 respectively).

It means that the plot of Figure 2.53, is not consistent, since the line should
coincide with the x-axis.

2.7 Technical achievements

Commenting upon results of Sections 2.6.1 and 2.6.2, we can say :

1. trendAgents are the breed with the lowest �tness if considered alone in the
market; but their in�uence is much less e�ective if we consider them together
with other breeds.

Their �tnesses in di�erent frameworks have a quite big correlation (of about
0.45), but the linear regression seems not to be the right model to explain
their variation (maybe higher degree models �ts better for the �tness of this
breed).

2. VolumeAgents : they are the only breed whose e�ect on di�erent market
structures, can be approximatively predicted, using a linear regression (more-
over they have the greatest correlation coe�cient).

3. The constrained �tnesses are always bigger than the unconstrained ones,
except in the case of BBAgents constrained by trendAgents.

207

Figure 2.51: CoveredAgents constrained to SLAgents: plot of the regression

208

Figure 2.52: CoveredAgents constrained to SLAgents: results of the regression

4. The di�erence in the average �tness (tested with ANOVA) of the samples
of the di�erent breeds, is statistically signi�cant: between trendAgents

and VolumeAgents, BBAgents, SLAgents ; between CoveredAgents and
SLAgents.

5. The �tness of SLAgents is the biggest compared to that of the other breeds
in the same conditions; the correlation between �tnesses of the programs
ASL.nlogo and A-B-C-SL-T-V.nlogo (with SLAgents optimal parameters
search), is quite big (about 0.4); but the linear regression does not work
on those data.

209

Figure 2.53: CoveredAgents constrained to SLAgents: plot of the regression

210

Chapter 3

Conclusions

Summarizing the work presented in the two parts:

About the �rst part of the thesis: the 'methodological'
one.

The objective of the �rst chapter is to study the BehaviorSearch characteristics,
through the analyses of some NetLogo programs.

For this purpose it has been given a preliminary description of the parts com-
posing the BehaviorSearch Experiment Editor ; then several searches have been
implemented, in order to compare the e�ectiveness of the algorithms available in
BehaviorSearch: they are StandardGA (genetic algorithm), RandomSearch, Muta-
tionHillClimber, and SimulatedAnnealing.

The �tness function is de�ned as the distance between the value of heigh
founded during the search (can be considered as the third dimension), and the
maximum value of heigh, present in the search space.

The �tness results reported (mean �tness values, intervals), are related to one-
hundred trials, where each trial determines a di�erent search, characterised by a
seed.

The NetLogo programs used to test BehaviorSearch algorithms, are:

• localH,localH2, localH3. They create simple three-dimensional spaces of size
16810000, they can be represented graphically as surfaces.

1. For what concern localH : it is a completely random and non smoothed
surface; to complete the analysis BehaviorSearch, lasts 3-4 minutes for
every algorithm..

StandardGA is not e�cient with custom parameters (�tness is often
lower than -0.2), while it is signi�cantly bigger increasing the population-size
input parameter (for example setting it to 200 instead of 50), or set-

211

ting steady-state-replace-worst as population-model (�tness of-
ten bigger than -0.1, sometimes equal to zero).

The RandomSearch algorithm, works well on localH, providing a �tness
always included in the interval [-0.04 , 0].

The SimulatedAnnealing and the MutationHillClimber algorithms
lead to �tnesses included in the intervals [-0.15 , 0] and [-0.1 , -0.01]
respectively.

2. About localH2 : it is a smoothed surface; BehaviorSearch lasts 3-4 sec-
onds for every algorithm to complete the optimal search.

The algorithms StandardGA, MutationHillClimber and SimulatedAn-
nealing �t well on this kind of search space, and the �tness is often
zero. In particular, with the StandardGA, it is possible to get an al-
ways zero �tness by increasing both population-size and the number
of model runs (but the software requires more time to complete the
analyses).

The RandomSearch algorithm is signi�cantly less e�cient than the oth-
ers, and the �tnesses reached are included in the interval [-0.6 , -0.12]
.

3. About localH3 : it is a smoothed surface, created using the function
sin().

The algorithms e�ectivenesses are the same of those observed for lo-
calH2 : only the RandomSearch provides a �tness that is rarely zero.

• localH1.1, localH2.2. They are constructed as localH and localH2, with the
di�erence that the search space created is larger: size of 65610000 for lo-
calH1.1, size of 630010000 for localH2.2 (instead of 16810000 for both localH
and localH2).

1. About localH1.1 : the time due to complete the BehaviorSearch analysis
is about four times greater than that of localH.

The StandardGA with custom parameters is more e�ective than in lo-
calH case, and the average �tness is about -0.05. Increasing the popula-
tion size leads to an increase in the �tness value, as observed for localH
(for example with population-size= 200 the average �tness is about
-0.02).

The RandomSearch can lead to an average �tness of -0.02: for localH1.1,
it is slightly more e�cient than MutationHillClimber and SimulatedAn-
nealing algorithms, that can attain an average �tness of about -0.06.

212

2. About localH2.2 : BehaviorSearch requires a time to complete the search,
that is 30-40 times greater than that of its predecessor localH2 (it is pro-
portional to the size of the search space analysed).

The algorithms StandardGA, MutationHillClimber, and SimulatedAn-
nealing produce an always zero �tness, within few model runs (300-500
out of 5000).

The RandomSearch algorithm is little faster, but reaches a worse �tness,
included in the interval [-0.2 , 0].

• MultivariateLocalH. It creates a six dimensional space; its shape is that of an
hypersphere: although it cannot be represented graphically, it is quite simple
to �nd its critical points, and it is smoothed. The search space size is about
2×1024 . The maximum is equal to 60010; the BehaviorSearch analysis lasts
3-4 seconds only.

the average �tnesses observed are:

1. -5000 for StandardGA with custom parameters;

-3000 setting as population model steady-state-replace-worst;

-6000 setting as population model steady-state-replace-random;

-2000 by changing only population-size= 10

-1000 setting population-size= 10 and population model equal to
steady-state-replace-worst.

2. -16000 for the RandomSearch algorithm.

3. -1500 for the MutationHillClimber algorithm.

4. -1600 for the SimulatedAnnealing algorithm.

More studies can be made implementing several search analyses on more com-
plex (multidimensional) search spaces, in order to identify other relevant charac-
teristics of the BehaviorSearch algorithms.

About the second part of the thesis: the 'empirical' one.
The second chapter exploits the genetic algorithm in an stock exchange agent

based simulation, to investigate the investment behavior of some trading agents
breeds, and their e�ect on the market.

The simulation is implemented using the NetLogo program, while the analysis
on the agents optimal parameters is performed using BehaviorSearch software tool.

213

The core structure (basic framework) of the stock exchange simulation is com-
posed by one-hundred RandomAgents and one arbitrageur : the �rst breed de-
cides whether to buy or sell depending on randomness, while the second breed is
necessary to realign the arti�cial market price to a real stock price, i.e. Ftse All
Share; the real price, has one minute frequency, and is represented by a time series
of 10095 realisations.

Then, there are �ve breeds of 'intelligent' agents that invest in the arti�cial
market price following di�erent strategies.

They are:

1. VolumeAgents : their strategy is based on trading volumes.

2. trendAgents : their strategy is based on the value of a moving average,
di�erent for any trendAgent.

3. BBAgents : they invest according to the market price level with respect to
Bollinger bands.

4. SLAgents : their investment behavior is based on a Stop Loss strategy, that
implies the use of call options, calculated through the Black and Scholes
formula.

5. CoveredAgents : their strategy is focused on both the value of a moving
average, and the trade of call or a put option, calculated through the Black
and Scholes formula.

Di�erent compositions of trading agents in the market, de�ne di�erent market
structures; the NetLogo programs that de�ne such market structures are:

- AV.nlogo : basic framework plus VolumeAgents breed.

- AT.nlogo : basic framework plus trendAgents breed.

- AB.nlogo : basic framework plus BollingerAgents breed.

- ASL.nlogo : basic framework plus SLAgents breed.

- AC.nlogo : basic framework plus CoveredAgents breed.

- ABT.nlogo : basic framework plus both BBAgents and trendAgents breeds.

- A-C-SL.nlogo : basic framework plus both SLAgents and CoveredAgents

breeds.

- A-B-C-SL-T-V.nlogo : basic framework plus all categories of trading agents.

214

The BehaviorSearch analyses, using genetic algorithm (StandardGA), are im-
plemented for each NetLogo program, in order to determine the optimal parameters
(sliders), and the �tness value related to the single breed, whose e�ect is indeed
tested in di�erent frameworks (market structures).

The �tness is de�ned as the average di�erence per-price, between arti�cial and
real markets, and it must be minimized.

For each market structure, ten �tness values, and ten values for the optimal
parameters, have been collected per trading agent breed, distinguishing each trial
by a di�erent seed.

Such values are collected in the tables of Sections .

Then two statistical tests have been performed to compare the �tnesses col-
lected:

1. ANOVA (one way). It is used to analyse the di�erences between group
means: one way ANOVA provides a statistical test (Fisher test) of whether
or not the means of several groups are equal.

The di�erent groups tested are represented by the �tnesses collected for
VolumeAgents, trendAgents, BBAgents, SLAgents, CoveredAgents in the
frameworks de�ned by the programsAV.nlogo, AT.nlogo, AB.nlogo, ASL.nlogo,
AC.nlogo.

The Fisher test has produced a statistically signi�cant di�erence between
the means of such groups, providing a con�dence interval of 0.9997 (p-value
of 0.0003). The standard error is equal to 2.06: there is evidence that results
provided by VolumeAgents and trendAgents, BBAgents and trendAgents,
CoveredAgents and trendAgents, SLAgents and trendAgents, SLAgents
and CoveredAgents have di�erent population means from each other.

2. Linear regression (simple). It is an approach to modeling the relationship
between two scalar variables (explanatory on the x-axis, dependent on the
y-axis), through the least squares estimator.

For what concern the �tnesses collected, for each breed of agents is imple-
mented a linear regression in which: the explanatory variable is represented
by the unconstrained �tnesses, i.e. those reached from the frameworks cre-
ated by the programs AV.nlogo, AT.nlogo, AB.nlogo, ASL.nlogo, AC.nlogo;
the dependent variable is represented by the constrained �tnesses, i.e. those
collected from the frameworks de�ned by the programs ABT.nlogo, A-C-
SL.nlogo, A-B-C-SL-T-V.nlogo.

The results can be summarised as follows;

215

(a) for VolumeAgents : with explanatory variable taken from AV.nlogo,
and dependent variable taken from A-B-C-SL-T-V.nlogo, both the co-
e�cients of the regression (intercept and slope) are statistically di�erent
from zero. This is the only case that shows a valid linear relationship
between the variables considered;

(b) for trendAgents : considering the �tnesses from AT.nlogo framework
as explanatory variable and those of A-B-C-SL-T-V.nlogo as dependent
one, both coe�cient of the regression are not statistically di�erent from
zero, meaning that the linear regression model does not work.

The same result hold, considering as dependent variable the group of �t-
nesses obtained from the framework de�ned by the program ABT.nlogo.

(c) for BBAgents : considering the �tnesses from AB.nlogo framework as
explanatory variable and those of A-B-C-SL-T-V.nlogo as dependent
one, the intercept is statistically di�erent from zero but the slope is not
statistically di�erent from zero.

The same result hold, considering as dependent variable the group of �t-
nesses obtained from the framework de�ned by the program ABT.nlogo.

It means that in both cases the linear regression model does not work.

(d) for SLAgents : considering the �tnesses from ASL.nlogo framework as
explanatory variable and those of A-B-C-SL-T-V.nlogo or A-C-SL.nlogo
as dependent one, the results are equal to those observed for BBAgents.

(e) for CoveredAgents : considering the �tnesses from AC.nlogo frame-
work as explanatory variables and those of A-B-C-SL-T-V.nlogo or A-
C-SL.nlogo as dependent ones, the results are equal to those observed
for BBAgents and SLAgents.

However regressions are strongly in�uenced by the magnitude of the sam-
ples analysed: considering bigger samples can lead to more interesting and
signi�cant results, compared to those reported in chapter 2.

In general it is very di�cult to investigate the true behavior of agents in the
market, knowing only the price trend, since there are a lot of random variables
that are di�cult to predict.

My work has the ambitious objective of approaching a realistic search of such
investment behavior through an agent based simulation.

In this direction further analyses can be made by considering other market
structures (for example with more agents), bigger samples for the statistical tests
(that can give more statistical signi�cance), and other statistical tools to analyse
the data. In this way it should be possible to reach interesting results.

216

For example considering the market structure of the program A-B-C-SL-T-
V.nlogo, we can investigate the optimal risk-free rate, and compare it with reality;
moreover always in such structure, if we allow the number of RandomAgents to
variate in the interval [10 1000] , we can get �tness values that are about one half
of those obtained in my analyses.

While to improve my work on NetLogo it should be possible to put beside the
arti�cial market, an arti�cial option market, through the creation of other breeds
of trading agents that are able to negotiate Call and Put options, assuming long
and short positions.

However increasing the degree of complexity of the simulation program, it is
always more di�cult to associate the correct statistics to the framework created,
and to interpret results.

Further developments of my work might lead to a new kind of professional tool,
useful to investigate the stock exchange strategies, using both genetic algorithms
and ABM.

217

Bibliography

Axtell, R. L. (2006). COORDINATION IN TRANSIENT SOCIAL NETWORKS:
AN AGENT-BASED COMPUTATIONAL MODEL OF THE TIMING OF RE-
TIREMENT ROBERT L. AXTELL AND JOSHUA M. EPSTEIN . In �Gener-
ative social science: Studies in agent-based computational modeling�, p. 146.

Ferraris, G. and Lamieri, M. (2004). DRAFT ART Arti�cial Reasoning Toolkit
How To Use. In �Doctoral Dissertation�.

Holland, J. H. (1992). Genetic algorithms . In �Scienti�c american�, vol. 267(1),
pp. 66�72.

Stonedahl, F. J. and Adviser-Wilensky, U. J. (2011). Genetic algorithms for the
exploration of parameter spaces in agent-based models . In �Doctoral Disserta-
tion�.

Wright, A. H. (2011). The exact schema theorem. In �arXiv preprint
arXiv:1105.3538�.

218

