University of Turin
School of Management and Economics
Master’s Degree in
Quantitative Finance and Insurance

Optimizing the behavior of trading agents
using genetic algorithms in a stock
exchange simulation framework with real
data.

Main supervisor: Candidate:

Prof. Pietro Terna Gerson Massobrio

Second supervisor:

Prof. Sergio Margarita

Academic Year 2012/2013

Contents

1 NetLogo and BehaviorSearch 7
1.1 Genetic Algorithms L o 7
1.1.1 Introduction 7
1.1.2 Background oo 8
1.1.3 Structure 11
1.1.4 Limitations e 16

1.2 BehaviorSearch 18
1.2.1 Overview e 18
1.2.2 What is BehaviorSearch 18
1.2.3 Howitworks 19

1.3 BehaviorSearch Tutorial 20
1.3.1 Imstallation and Structure 20
1.3.2 The BehaviorSearch experiment editor 22
1.3.3 Run BehavorSearch 37
1.3.4 Examples 39
1.3.5 Comparison between search algorithms 54
1.3.6 Technical achievements 82

2 Stock exchange simulation and search of the optimal agents be-

havior 84
2.1 Usermanual 84
2.1.1 gl _CDA _basic _model 84
2.1.2 Level Price Real Data Agents 86
2.1.3 Trend Agents 89
2.1.4 Volume Agents 91
2.1.5 Stop Loss Agentso 92
2.1.6 Covered Agentso 98
2.1.7 Bollinger Bands Agents 106
2.2 Basic Frameworko oo 108
2.3 Market structureso 115

2.3.1 Market structures: basic framework plus one trading agents

breed 115
2.3.2 Market structures: basic framework plus more than one
trading agents breedo 125
2.3.3 Agents effect on the market 129
2.4 Simulations 143

2.4.1 Comparisons between artificial and real market : AV.nlogo . 145
2.4.2 Comparisons between artificial and real market : AT.nlogo . 145
2.4.3 Comparisons between artificial and real market : AB.nlogo . 145
2.4.4 Comparisons between artificial and real market : AST.nlogo 149
2.4.5 Comparisons between artificial and real market : AC.nlogo . 149
2.4.6 Comparisons between artificial and real market : ABT.nlogo 152
2.4.7 Comparisons between artificial and real market : A-C-SL.nlogo152
2.4.8 Comparisons between artificial and real market : A-B-C-T-

SL-V.nlogo o 155

2.5 Optimize Agents Behavior 157
2.5.1 Preliminary BehaviorSearch test: the price structure 158
2.5.2 BehaviorSearch test number 1: VolumeAgents 160
2.5.3 BehaviorSearch test number 2: trendAgents 162
2.5.4 BehaviorSearch test number 3: BBAgents 164
2.5.5 BehaviorSearch test number 4: SLAgents 167
2.5.6 BehaviorSearch test number 5: CoveredAgents 170

2.5.7 BehaviorSearch test number 6: trendAgents + BBAgents . . 172
2.5.8 BehaviorSearch test number 7: SLAgents + CoveredAgents . 176
2.5.9 BehaviorSearch test number 8: all trading agents breeds . . 179

2.6 Statistical tests with R uponresults 186
2.6.1 ANOVA test on the fitness results of agents breeds 188
2.6.2 Linear regressions between unconstrained fitness of breeds
and constrained fitness of breeds 191
2.7 Technical achievements 206
3 Conclusions 210

Aknowledgements

I would like to express my deep gratitude to Professor Pietro Terna, my main su-
pervisor, for his patient guidance, enthusiastic encouragement and useful critiques
of this experimental work.

Finally, T wish to thank my parents, my girlfriend, and my classmates, for their
support and encouragement throughout my study.

Introduction

Uncertainty in economics is an unknown prospect of gain or loss, whether quan-
tifiable as risk or not. Without it, household behavior would be unaffected by
uncertain employment and income prospects, financial and capital markets would
reduce to exchange of a single instrument in each market period, and there would
be no communications industry.

Economic theories are frequently tested empirically, largely through the use
of econometrics using economic data. The controlled experiments common to the
physical sciences are difficult and uncommon in economics, and instead broad data
is observationally studied; this type of testing is typically regarded as less rigorous
than controlled experimentation, and the conclusions typically more tentative.
However, the field of experimental economics is growing, and increasing use is
being made of natural experiments.

Statistical methods such as regression analysis are common. Practitioners use
such methods to estimate the size, economic significance, and statistical signifi-
cance (’signal strength’) of the hypothesized relation(s) and to adjust for noise
from other variables. By such means, a hypothesis may gain acceptance, although
in a probabilistic, rather than certain, sense. Acceptance is dependent upon the
falsifiable hypothesis surviving tests. Use of commonly accepted methods need
not produce a final conclusion or even a consensus on a particular question, given
different tests, data sets, and prior beliefs.

Criticism based on professional standards and non-replicability of results serve
as further checks against bias, errors, and over-generalization, although much eco-
nomic research has been accused of being non-replicable, and prestigious journals
have been accused of not facilitating replication through the provision of the code
and data.

Prior to, and in the wake of the financial crisis, interest has grown in ABMs as
possible tools for economic analysis. ABMs do not assume the economy can achieve
equilibrium and "representative agents'" are replaced by agents with diverse, dy-
namic, and interdependent behavior including herding. ABMs take a "bottom-up"
approach and can generate extremely complex and volatile simulated economies.
ABMs can represent unstable systems with crashes and booms that develop out

of non-linear (disproportionate) responses to proportionally small changes.
However, the idea of agent-based modeling was developed as a relatively simple
concept in the late 1940s. Since it requires computation-intensive procedures, it
did not become widespread until the 1990s.
In fact ABMs are typically implemented as computer simulations,either as cus-
tom software, or via ABM toolkits, and this software can be then used to test how
changes in individual behaviors will affect the system’s emerging overall behavior.

ABM

An agent-based model (ABM) is a class of computational models for simulating
the actions and interactions of autonomous agents (both individual or collective
entities such as organizations or groups) with a view to assessing their effects on
the system as a whole. It combines elements of game theory, complex systems,
emergence, computational sociology, multi-agent systems, and evolutionary pro-
gramming.

With the appearance of StarLogo in 1990, Swarm and NetLogo in the mid-
1990s and RePast and AnyLogic in 2000, or GAMA in 2007 as well as some
custom-designed code, modelling software became widely available and the range
of domains that ABM was applied to, grew.

Citing Axtell (2006): ’Compactly, in agent based computational models, a
population of data structures representing individual agents is instantiated and
permitted to interact. Omne then looks for systematic regularities, often at the
macro level, to emerge from the local interactions of the agents. The shorthand
for this is that macroscopic regularities 'grow’ from the bottom up. No equations
governing the overall social structure are stipulated in multi-agent computational
models, thus avoiding any aggregation or misspecification bias. Typically, the
only equations present are those used by individual agents for decision-making.
Different agents may have different decision rules and different information; usu-
ally, no agents have global information, and the behavioral rules involve bounded
computational capacities, the agents are 'simple’. This relatively new methodol-
ogy facilitates the modeling of agent heterogeneity, boundedly rational behavior,
nonequilibrium dynamics, and spatial processes. A particularly natural way to
implement agent-based models is through ’ object-oriented” programming. ’

NetLogo

NetLogo is an agent-based programming language and integrated modeling envi-
ronment.

NetLogo was designed, in the spirit of the Logo programming language, to be
"low threshold and no ceiling". It teaches programming concepts using agents
in the form of turtles, patches, "links" and the observer. NetLogo was designed
for multiple audiences in mind, in particular: teaching children in the education
community, and for domain experts without a programming background to model
related phenomena.

The NetLogo environment enables exploration of emergent phenomena. It
comes with an extensive models library including models in a variety of domains,
such as economics, biology, physics, chemistry, psychology, system dynamics. Net-
Logo allows exploration by modifying switches, sliders, choosers, inputs, and other
interface elements. Beyond exploration, NetLogo allows authoring of new models
and modification of existing models. NetLogo is freely available from the NetLogo
website. It is in use in a wide variety of educational contexts from elementary
school to graduate school. Many teachers make use of NetLogo in their curric-
ula. NetLogo was designed and authored in 1999 by Uri Wilensky, director of
Northwestern University’s Center for Connected Learning and Computer-Based
Modeling.

It is particularly well suited for modeling complex systems developing over time.
Modelers can give instructions to hundreds or thousands of agents all operating
independently. This makes it possible to explore the connection between the micro-
level behavior of individuals and the macro-level patterns that emerge from their
interaction.

My thesis is mainly organized in two parts:

1. the fist one (Chapter 1) can be defined as a 'methodological’ part. It summa-
rizes the characteristics of the genetic algorithm, and describes the properties
of BehaviorSearch software tool, showing some simple examples of how it in-
terfaces with NetLogo.

2. The second one (Chapter 2), is a more ’empirical’ part. It develops the
interaction between NetLogo and BehaviorSearch, considering more complex
problems. It treats the analysis with BehaviorSearch of the behavior and
the effect of some categories of trading agents, inserted in a stock exchange
simulation with real data, created with NetLogo.

The results coming from the interaction of the two programs are finally
examined using two statistical tools: ANOVA and linear regression.

Chapter 3 summarizes the results of the two parts, concluding my work.

Chapter 1

NetLogo and BehaviorSearch

1.1 Genetic Algorithms

1.1.1 Introduction

In the computer science field of artificial intelligence, a genetic algorithm (GA) is
a search heuristic that mimics the process of natural selection. This heuristic (also
sometimes called a metaheuristic) is routinely used to generate useful solutions to
optimization and search problems. Genetic algorithms belong to the larger class
of evolutionary algorithms (EA), which generate solutions to optimization prob-
lems using techniques inspired by natural evolution, such as inheritance, mutation,
selection, and crossover.

Those alghorithms are generally based on: Holland (1992) two primary natural
processes; natural selection and sexual reproduction. The first determines which
members of a population survive to reproduce, and the second ensures mixing
and recombination among the genes of their offspring. When sperm and ova fuse,
matching chromosomes line up with one another and then cross over partway
along their length, thus swapping genetic material. This mixing allows creatures
to evolve much more rapidly than they would if each offspring simply contained a
copy of the genes of a single parent, modified occasionally by mutation. Selection
is simple: if an organism fails some test of fitness, such as recognizing a predator
and fleeing, it dies.

Genetic algorithms find application in bioinformatics, phylogenetics, compu-
tational science, engineering, economics, chemistry, manufacturing, mathematics,
physics, pharmacometrics and other fields.

In a genetic algorithm, a population of candidate solutions (called individuals,
creatures, or phenotypes) to an optimization problem is evolved toward better
solutions. Each candidate solution has a set of properties (its chromosomes or
genotype) which can be mutated and altered; traditionally, solutions are repre-

sented in binary as strings of Os and 1s, but other encodings are also possible.
Initially many individual solutions are (usually) randomly generated to form an
initial population. The population size depends on the nature of the problem, but
typically contains several hundreds or thousands of possible solutions. Tradition-
ally, the population is generated randomly, allowing the entire range of possible
solutions (the search space). Occasionally, the solutions may be "seeded" in areas
where optimal solutions are likely to be found.

Genetic algorithms are simple to implement, but their behavior is difficult
to understand;citing Holland (1992) «by harnessing the mechanisms of evolution,
researchers may be able to ‘breed’ programs that solve problems even when no person
can fully understand their structure.

So in general it is difficult to understand why these algorithms frequently suc-
ceed at generating solutions of high fitness when applied to practical problems. The
building block hypothesis (BBH) consists of:

1. A description of a heuristic that performs adaptation by identifying and
recombining "building blocks", i.e. low order, low defining-length schemata
with above average fitness.

2. A hypothesis that a genetic algorithm performs adaptation by implicitly and
efficiently implementing this heuristic.

Goldberg describes the heuristic as follows:

short, low order, and highly fit schemata are sampled, recombined
(crossed over), and resampled to form strings of potentially higher fit-
ness. In a way, by working with these particular schemata (the build-
ing blocks), we have reduced the complexity of our problem; instead
of building high-performance strings by trying every conceivable com-
bination, we construct better and better strings from the best partial
solutions of past samplings.

Because highly fit schemata of low defining length and low order play such an
important role in the action of genetic algorithms, we have already given them
a special name: building blocks. Just as a child creates magnificent fortresses
through the arrangement of simple blocks of wood, so does a genetic algorithm
seek near optimal performance through the juxtaposition of short, low-order, high-
performance schemata, or building blocks.

1.1.2 Background

To understand how the genetic algorithm properly works, I have to give some
definition, about the concepts previously mentioned.

- Search algorithms: In computer science, a search algorithm is an algorithm
for finding an item with specified properties among a collection of items. The
items may be stored individually as records in a database; or may be elements
of a search space defined by a mathematical formula or procedure.

Algorithms for searching virtual spaces are used in constraint satisfaction
problem, where the goal is to find a set of value assignments to certain
variables that will satisfy specific mathematical equations and inequations.
They are also used when the goal is to find a variable assignment that will
maximize or minimize a certain function of those variables. Algorithms for
these problems include the basic brute-force search (also called "uninformed"
or "random" search), and a variety of heuristics that try to exploit partial
knowledge about structure of the space, such as linear relaxation, constraint
generation, and constraint propagation.

A heuristic function, or simply a heuristic, is a function that ranks alterna-
tives in search algorithms at each branching step based on available infor-
mation to decide which branch to follow.

An important subclass are the local search methods, that view the elements
of the search space as the vertices of a graph, with edges defined by a set of
heuristics applicable to the case; and scan the space by moving from item
to item along the edges, for example according to the steepest descent or
best-first criterion, or in a stochastic search. This category includes a great
variety of general metaheuristic methods, such as simulated annealing, tabu
search, A-teams, and genetic programming, that combine arbitrary heuristics
in specific ways.

- Schemata: A schema is a template in computer science used in the field
of genetic algorithms that identifies a subset of strings with similarities at
certain string positions. Schemata are a special case of cylinder sets; and
so form a topological space. For example, consider binary strings of length
6. The schema 1**0*1 describes the set of all words of length 6 with 1’s at
the first and sixth positions a 0 at the fourth position. The * is a wildcard
symbol, which means that positions 2, 3 and 5 can have a value of either 1
or 0. The order of a schema is defined as the number of fixed positions in
the template, while the defining length §(H) is the distance between the first
and last specific positions. The order of 1**0*1 is 3 and its defining length
is 5. The fitness of a schema is the average fitness of all strings matching
the schema. The fitness of a string is a measure of the value of the encoded
problem solution, as computed by a problem-specific evaluation function.

- Cylinder sets In mathematics, a cylinder set is the natural open set of a
product topology. Cylinder sets are particularly useful in providing the base

10

of the natural topology of the product of a countable number of copies of
a set. If V is a finite set, then each element of V can be represented by
a letter, and the countable product can be represented by the collection of
strings of letters. In general Consider the cartesian product X =[], X, , of
topological spaces X, indexed by some index a. The canonical projection
is the function p, : X — X, that maps every element of the product to its «
component. Then, given any open set U C X, the preimage p,*(U) is called
an open cylinder. The intersection of a finite number of open cylinders is a
cylinder set. The collection of open cylinders form a subbase of the product
topology on X; the collection of all cylinder sets thus form a basis.

Topological spaces: In topology and related branches of mathematics, a
topological space is a set of points, along with a set of neighbourhoods for
each point, that satisfy a set of axioms relating points and neighbourhoods.
The definition of a topological space relies only upon set theory and is the
most general notion of a mathematical "space" that allows for the defini-
tion of concepts such as continuity, connectedness, and convergence. Other
spaces, such as manifolds and metric spaces, are specializations of topologi-
cal spaces with extra structures or constraints. Being so general, topological
spaces are a central unifying notion and appear in virtually every branch of
modern mathematics. The branch of mathematics that studies topological
spaces in their own right is called point-set topology or general topology.
The utility of the notion of a topology is shown by the fact that there are
several equivalent definitions of this structure. The most commonly used is
that in terms of open sets.

11

Open sets definition: Given such a structure, we can define a
subset U of X to be open if U is a neigh-
bourhood of all points in U.Let define
N to be a neighbourhood of x if N con-
tains an open set U such that x € U .
A topological space is then a set X to-
gether with a collection of subsets of X,
called open sets and satisfying the fol-
lowing axioms:

(1) The empty set and X itself are open.
(2) Any union of open sets is open.

(3) The intersection of any finite num-
ber of open sets is open.

The collection 7 of open sets is then
also called a topology on X, or, if more
precision is needed, an open set topol-
ogy. The sets in 7 are called the open
sets, and their complements in X are
called closed sets. A subset of X may be
neither closed nor open, either closed or
open, or both. A set that is both closed
and open is called a clopen set.

1.1.3 Structure

In Holland (1992) the GA structure is introduced by giving, first of all, the def-
inition of classifier system; it consists in a set of rules, each of which performs
particular actions every time its conditions are satisfied by some piece of informa-
tion. From a general point of view, any program that can be written in a standard
programming language such as Python can be rewritten as a classifier system.

Ferraris and Lamieri (2004) describe a non learning classifier system through
four principal components:

List of classifiers (population of classifiers).

List of messages that plays the role of a ‘'message board’ for communications
and short term memory.

Input interface (detector) that represents the environment state.

Output interface (effector) that ensures interaction with the environment or
its change.

12

At any time the classifier list can contain zero or more classifier. Each classifier
consists of a string of fixed length and binary alphabet. A classifier list consists of
a set of classifiers looking as follows:

conditionl, condition2, ..., condition N : action

When the condition part of the classifier matches the input message, activation
of the classifier occurs, i.e. the classifier puts one or more messages on the message
list. The output interface is a device or sub-program that receives action messages
and on their basis performs manipulations with the environment.

Classifier system is being optimized by using learning rule called 'bucket brigade
and evolutionary algorithms (genetic algorithms). During learning process rules
priorities (strengths) are changed. In case of success current and previous activated
rules are encouraged. Evolutionary methods are used for new rules searching.

In general, to evolve classifier rules that solve a particular problem, one simply
starts with a population of random strings of I’'s and 0’s and rates each string
according to the quality of its result. Depending on the problem, the measure of
fitness could be business profitability, game payoff, error rate or any number of
other criteria. High-quality strings mate; low-quality ones perish. As generations
pass, strings associated with improved solutions will predominate.

The conditions and actions are represented by strings of bits corresponding to
the presence or absence of specific characteristics in the rules’ input and output.

For what concerns Genetic Algorithms, the chief problem is the construction
of a "genetic code" that can represent the structure of different programs, just as
DNA represents the structure of a person or a mouse. The evolution usually starts
from a population of randomly generated individuals, and is an iterative process,
with the population in each iteration called a generation. In each generation, the
fitness of every individual in the population is evaluated; the fitness is usually
the value of the objective function in the optimization problem being solved. The
more fit individuals are stochastically selected from the current population, and
each individual’s genome is modified (recombined and possibly randomly mutated)
to form a new generation. The new generation of candidate solutions is then used
in the next iteration of the algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been produced, or a satisfactory
fitness level has been reached for the population.

A typical genetic algorithm requires:

Y

- a genetic representation of the solution domain;
- a fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as an array of bits.
Arrays of other types and structures can be used in essentially the same way. The

13

main property that makes these genetic representations convenient is that their
parts are easily aligned due to their fixed size, which facilitates simple crossover
operations.

During each successive generation, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through a
fitness-based process, where fitter solutions (as measured by a fitness function)
are typically more likely to be selected. Certain selection methods rate the fitness
of each solution and preferentially select the best solutions. Other methods rate
only a random sample of the population, as the former process may be very time-
consuming.

The fitness function is defined over the genetic representation and measures
the quality of the represented solution. The fitness function is always problem
dependent. For instance, in the knapsack problem one wants to maximize the
total value of objects that can be put in a knapsack of some fixed capacity. A
representation of a solution might be an array of bits, where each bit represents
a different object, and the value of the bit (0 or 1) represents whether or not the
object is in the knapsack. Not every such representation is valid, as the size of
objects may exceed the capacity of the knapsack. The fitness of the solution is
the sum of values of all objects in the knapsack if the representation is valid, or 0
otherwise.

To be more precise I give some notations,to define a genetic algorithm:

Let €2 be the space of length I binary strings, and let n = 21 . For u, v € Q, let
u @ v denote the bitwise-and of u and v, and let u @& v denote the bitwise-xor of
u and v. Let = u denote the ones-complement of u, and fu denote the number of
ones in the binary representation of u.

Integers in the interval [0,n) = [0,2]) are identified with the elements of 2
through their binary representation. This correspondence allows €2 to be regarded
as the product group

Q:ZQX...XZQ

where the group operation is @. The elements of) corresponding to the
integers 2¢,4 = 0, ...,]1 — 1 form a natural basis for .

The column vectors of length I form the elements of (2. Let 1 denote the vector
of ones (or the integer 2I1). Thus, u’v = f(u ®v)’ and =u=1d u.

For any u € , let §2, denote the subgroup of 2 generated by (2° : u@®2" = 2%).
In other words, v € , if and only if v ®u = v. For example, if I = 6, then
Qo = {0,1,8,9} = {000000, 000001, 001000, 001001}

A schema is a subset of (2 where some string positions are determined (fixed)
and some are not determined (variable). Schemata are traditionally denoted by

14

pattern strings, where a special symbol is used to denote a not determined bit.
Using the symbol * for this purpose: the schema denoted by the pattern string
10 % 01x is the set of strings {100010, 100011, 101010, 101011, }.

Alternatively a schema can also be defined as: the set (,® v, where u, v € {2,
and where u@®v = 0. In this notation, u is a mask for the variable positions, and v
determines the fixed positions. For example, the schema € .1,0,0,1 ® 100010 would
be the schema 10 * 01% described above.

This definition makes it clear that a schema €2,& v with v = 0 is a subgroup
of 2, and a schema €2,® v is a coset of this subgroup.

Following standard practice, we will define the order of a schema as the number
of fixed positions. In other words, the order of the schema Q_w is fu (since u is a
mask for the fixed positions).

A population for a genetic algorithm over length I binary strings is usually
interpreted as a multiset (set with repetitions) of elements of 2. A population can

also be interpreted as a 9l dimensional incidence vector over the index set Q. if
X is a population vector, then X; is the number of occurrences of i € € in the
population. A population vector can be normalized by dividing by the population
size. For a normalized population vector z,), x; = 1. Let

A:{xER":inzl,xiZO for any i € Q}

Thus a normalized population vector is an element of A. Geometrically, A
is the n — 1 dimensional unit simplex in R™ . Note that elements of A can be
interpreted as probability distributions over).

If expr is a Boolean expression, then
[exzpr] = {1 if expr is true;0 if expr is false

The simple genetic algorithm can be described through a heuristic function G
: A — A. G contains all of the details of selection, crossover, and mutation. The
simple genetic algorithm is given by:

1 Choose a random population of size r from 2.
2 Express the population as an incidence vector X indexed over (2.

3 Let y = G(X/r). (Note that X/r and y are probability distributions over 2.)

15

4 for k from 1 to r do

5 Select individual i € Q2 according to the probability distribution y.
6 Add i to the next generation population Z.

7 endfor

8 Let X = Z.

9 Go to step 3.

If X is a population, then y = G(X/r) is the expected population after one
generation of the simple genetic algorithm. In this framework we can relate to the
schema theorem, that is a statement about the schema averages of the population
y.

The heuristic function G can be written as the composition of three heuristic
functions F, C, and U which describe selection, crossover, and mutation respec-
tively. In other words,

G(z) = U(C(F(2))) = U o C o F().

Holland’s Schema Theorem: it is widely taken to be the foundation for
explanations of the power of genetic algorithms. It says that short, low-order
schemata with above-average fitness increase exponentially in successive genera-
tions. The theorem was proposed by John Holland in the 1970s.

A general equation is:

m(H,t)f(H)

ag

E(m(H,t+1)) > [1—pl.
Here m(H,t) is the number of strings belonging to schema H at generation
t, f(H) is the observed fitness of schema H and a; is the observed average fitness
at generation t. The probability of disruption p is the probability that crossover
or mutation will destroy the schema H. It can be expressed as:
0(H)

= H
p= 7Pt o(H)pm

where o(H) is the order of the schema, 1 is the length of the code, p,, is the
probability of mutation and p. is the probability of crossover. So a schema with a
shorter defining length 6(H) is less likely to be disrupted.

An often misunderstood point is why the Schema Theorem is an inequality
rather than an equality. The answer is in fact simple: the Theorem neglects the
small, yet non-zero, probability that a string belonging to the schema H will be
created "from scratch" by mutation of a single string (or recombination of two
strings) that did not belong to H in the previous generation.

16

1.1.4 Limitations

- Repeated fitness function evaluation for complex problems is often the most
prohibitive and limiting segment of artificial evolutionary algorithms. Find-
ing the optimal solution to complex high dimensional, multimodal problems
often requires very expensive fitness function evaluations. In real world prob-
lems such as structural optimization problems, one single function evaluation
may require several hours to several days of complete simulation. Typical
optimization methods can not deal with such types of problem. In this case,
it may be necessary to forgo an exact evaluation and use an approximated
fitness that is computationally efficient. It is apparent that amalgamation
of approximate models may be one of the most promising approaches to
convincingly use GA to solve complex real life problems.

- Genetic algorithms do not scale well with complexity. That is, where the
number of elements which are exposed to mutation is large there is often an
exponential increase in search space size. This makes it extremely difficult
to use the technique on problems such as designing an engine, a house or
plane. In order to make such problems tractable to evolutionary search, they
must be broken down into the simplest representation possible. Hence we
typically see evolutionary algorithms encoding designs for fan blades instead
of engines, building shapes instead of detailed construction plans, airfoils
instead of whole aircraft designs. The second problem of complexity is the
issue of how to protect parts that have evolved to represent good solutions
from further destructive mutation, particularly when their fitness assessment
requires them to combine well with other parts.

- The "better" solution is only in comparison to other solutions. As a result,
the stop criterion is not clear in every problem.

- In many problems, GAs may have a tendency to converge towards local op-
tima or even arbitrary points rather than the global optimum of the problem.
This means that it does not "know how" to sacrifice short-term fitness to
gain longer-term fitness. The likelihood of this occurring depends on the
shape of the fitness landscape: certain problems may provide an easy ascent
towards a global optimum, others may make it easier for the function to
find the local optima. This problem may be alleviated by using a different
fitness function, increasing the rate of mutation, or by using selection tech-
niques that maintain a diverse population of solutions, although the Wright
(2011) No Free Lunch theorem proves that there is no general solution to this
problem. A common technique to maintain diversity is to impose a "niche
penalty", wherein, any group of individuals of sufficient similarity (niche

17

radius) have a penalty added, which will reduce the representation of that
group in subsequent generations, permitting other (less similar) individuals
to be maintained in the population. This trick, however, may not be effec-
tive, depending on the landscape of the problem. Another possible technique
would be to simply replace part of the population with randomly generated
individuals, when most of the population is too similar to each other. Diver-
sity is important in genetic algorithms (and genetic programming) because
crossing over a homogeneous population does not yield new solutions. In
evolution strategies and evolutionary programming, diversity is not essential
because of a greater reliance on mutation.

Operating on dynamic data sets is difficult, as genomes begin to converge
early on towards solutions which may no longer be valid for later data. Sev-
eral methods have been proposed to remedy this by increasing genetic di-
versity somehow and preventing early convergence, either by increasing the
probability of mutation when the solution quality drops (called triggered
hypermutation), or by occasionally introducing entirely new, randomly gen-
erated elements into the gene pool (called random immigrants). Again, evo-
lution strategies and evolutionary programming can be implemented with a
so-called "comma strategy" in which parents are not maintained and new
parents are selected only from offspring. This can be more effective on dy-
namic problems.

GAs cannot effectively solve problems in which the only fitness measure is
a single right /wrong measure (like decision problems), as there is no way to
converge on the solution (no hill to climb). In these cases, a random search
may find a solution as quickly as a GA. However, if the situation allows the
success/failure trial to be repeated giving (possibly) different results, then
the ratio of successes to failures provides a suitable fitness measure.

For specific optimization problems and problem instances, other optimization
algorithms may find better solutions than genetic algorithms (given the same
amount of computation time). Alternative and complementary algorithms
include evolution strategies, evolutionary programming, simulated annealing,
Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony
optimization, particle swarm optimization) and methods based on integer
linear programming. The question of which, if any, problems are suited to
genetic algorithms (in the sense that such algorithms are better than others)
is open and controversial.

18

1.2 BehaviorSearch

1.2.1 Overview

The BehaviorSearch software was initially developed as part of Forrest Stonedahl’s
doctoral thesis research, with adviser Uri Wilensky at the Center for Connected
Learning and Computer-Based Modeling at Northwestern University. It is an open
source project.

The practice of designing and building new tools is crucial to computer sci-
ence; compilers are an example of a software tool that fundamentally changed the
landscape of computer science. However, many other tools have had substantial
impact on the discipline, and society at large. One example of the success of tool
building is NetLogo platform that BehaviorSearch interfaces with.

In this chapter, we will discuss the characteristics of BehaviorSearch , which is
an open-source cross-platform tool that offers several search algorithms and search-
space representations/encodings, and can be used to explore the parameter space
of any Agent Based Model (ABM) written in the NetLogo language.

If you want to show the world a model that displays elephant-trunk-wiggling
behavior, BehaviorSearch can help you find parameter settings that will do that.
Does the discovery of such parameters mean you have developed a good model?
Not necessarily. It only means that the behavior you sought exists somewhere in
the parameter space.

BehaviorSearch aims to facilitate model analysis by making search and opti-
mization techniques accessible to all modelers.

1.2.2 What is BehaviorSearch

BehaviorSearch is a software tool to help with automating the exploration of agent-
based models (ABMs), by using genetic algorithms and other heuristic techniques
to search the parameter-space.

BehaviorSearch interfaces with the popular NetLogo ABM development plat-
form, to provide a low-threshold way to search for combinations of model parameter
settings that will result in a specified target behavior.

Model exploration works through four steps:

1. Design a quantitative measure for the behavior you're interested in.
2. Choose parameters to vary and what ranges are allowed.
3. Choose a search algorithm and run it.

4. Examine the results (what parameters most affect this behavior?)

19

1.2.3 How it works

According to Stonedahl and Adviser-Wilensky (2011), BehaviorSearch general fea-
tures are:

1. Parameter-type flexibility. BehaviorSearch is capable of searching a com-
bination of numerical (discrete/continuous), boolean, and categorical param-
eters. This is an important feature, since ABM parameters often take various
forms, and are not constrained to always be of uniform type.

2. Search method variety. BehaviorSearch offers several different search al-
gorithms and search space representations that users can employ. It has
been designed as a general tool for applying any type of metaheuristic search
algorithm to explore ABM parameter spaces. At present, BehaviorSearch
supports the following search algorithms: random search, stochastic hill
climbing, simulated annealing, and two variants of the genetic algorithm
(generational GA and steady-state GA). This flexibility is important since
different approaches can be more or less effective for exploring different mod-
els.

3. Best-checking. BehaviorSearch provides built-in support of best-checking,
to prevent users of the software from being misled by high fitness values
resulting from ABM stochasticity (and so that users can easily detect if the
search algorithm is being misled).

4. Multi-resolution data output. BehaviorSearch can collect and store data
at various levels of detail: recording eachmodel run performed, each fitness
evaluation, each time a new ‘best‘ is found, as well as the final best param-
eter settings at the end of each search. While novices can effectively use
BehaviorSearch by simply looking at the final best parameters found, more
advanced users can dig deeper into the search process and the results and
parameters examined along the way.

5. Parametric derivatives. Built-in support for approximating derivatives
of a behavioural objective function with respect to a specified parameter.
This is useful for detecting phase transitions and critical points in the pa-
rameter space.

6. Parallelization and multi-threading support. BehaviorSearch was de-
signed from the ground up with multi-threaded support for parallel searching,
offering improved performance for multi-processor / multi-core computers.
As the number of cores in desktop computers proliferates, harnessing this
parallelism becomes a crucial performance issue.

20

7. Extensibility. BehaviorSearch was developed using an extensible object-
oriented framework, allowing new search algorithms and search space repre-
sentations to be easily added.

1.3 BehaviorSearch Tutorial

BehaviorSearch has been released under an open-source license.

The BehaviorSearch tools is also supported by the accompanying project web-
site, located at www.behaviorsearch.org/. This website provides additional
resources, such as a summary of features, information about new releases, links
to relevant papers, and a contact form for user feedback. This site also links to a
Google Code open source project website, with an issue/bug tracker, and access
to the source code.

To deeper explain the characteristics of BehaviorSearch mentioned in the pre-
vious section, I will describe with some examples how BehaviorSearch works on
NetLogo platform.

1.3.1 Installation and Structure

In an effort to make the software easy to use, the first step is making it easy to
install. Since BehaviorSearch requires BehauviorSearch to perform model runs, it
needs to reside in a sub-folder of the NetLogo installation folder. This can be a
challenge, particularly on variants of the Windows operating system, where users
may have difficulty in

finding the NetLogo installation folder, and may not have write-access privi-
leges to modify its contents. As a result, there is a graphical executable installer
for Windows to simplify this installation process. (Installation on Mac/Linux com-
puters is also reasonably straightforward, and generally just requires dropping a
folder into the NetLogo application directory).

BehaviorSearch has a modular architecture, that permits changes to one part
of the code without affecting others.

At a finer level of detail, the BehaviorSearch codebase (written in Java) is
divided into eight packages for organizational purposes:

- bsearch.algorithms - contains all of the search algorithms.
- bsearch.app - contains the main code driving the BehaviorSearch application.

- bsearch.evaluation - contains code for handling
fitness evaluation and

fitness caching.

21

bsearch.nlogolink - handles all of the communication with the NetLogo plat-
form.

bsearch.representations - contains all of the search space representations.

bsearch.space - contains a representation of the parameter space.

bsearch.test - a package that contains unit testing.

bsearch.util - a package containing miscellaneous utility functions.

A schematic representation of the BehaviorSearch structure can be seen in
Figure 1.1:

= —— | XML search protocol:

* sparch method
search parameters
space representatbon
ohjective function

output settings [E NetLogo

w
L ¥ y I

[@ BehaviorSearch t parametets, PN <eed [—»f Controlling API |

model run results {JEI'U'-El:I'

T ¥ |

Dutput: full history of all model runs

—— ——

BehaviarSearch GUI

ep it ontionsl |
LEE 15 opiona

|

BehaviorSearch
Extension APl

Duiput: objective function evaluation history

For adding new search
algorithms and space
regresentations in a

micdular wan search, + final bast parametars for each search.

Dutput: best parameters found throughowt the

Figure 1.1: Design schematic of the BehaviorSearch architecture.

As shown in figure 1.1, BehaviorSearch contains an extensions API. This API
provides a clean interface for extending its capabilities via new search algorithms
and search space representations, which will help support both continued research
and any special needs of end users of the tool.

22

File Help

Some Model.nloge | Browse for model...

Parameter Specification | 2 Setup: |setup
["integerParameter” [0 1 10]1] | Step: |gc:
["fixedParameter™ 15] 4
["econtinuousParameter™ [0.0 "C" 1.01] M e 'fmean betimranl GE bortios
["BoocleanParameter” true falsel
["choiceParameter™ "near™ "far"]

Measure If: |t:ue

Stop I !ccunt turtles > 1000

| Load param ranges from model interface | Step Limit: 100 model steps
Search Method Configuration Objective | Fitness Function | 2 |
StandardGA = |2 Goal: [Maximize Fit...
Parameter Value Collected measure: |AT_FINAL_STEP -
mutation-rate .03 ;
population-size 50 Fixed Samping | [10
crossover-rate 0.7
population-model generational Combine replicates: |MEAN o
tournament-size 3
[7] Take derivative? Use ABS value?
= A= 0.0
[#] Use fitness caching Evaluation limit: | 200 model runs
Search Encoding Representation BestChecking replicates: |0
GrayBinaryChromosome = | ? | Run BehaviorSearch

Figure 1.2: BehaviorSearch Ezxperiment Editor

When you first open BehaviorSearch, the window that appears is the Behav-
torSearch Experiment Editor. BehaviorSearch is centered around the paradigm of
an experiment (or search protocol), which contains all of the information necessary
to specify how the search should be performed on a model.

The BehaviorSearch GUI helps you create, open, modify, and save these exper-
iments (stored as files with the ".bsearch" extension). The BehaviorSearch engine
is separated from the GUI layer, and does not depend on it.

The BehaviorSearch Experiment Editor is shown in Figure 1.2:

1.3.2 The BehaviorSearch experiment editor

1. First step: load a NetLogo program. In order to start the Behav-
torSearch analysis on a NetLogo program, first of all we have to load such

23

H[“intege:ParamEter“ 8 e e 3 B
H["fixedPa:amEte:" 15]
ﬂ[“:nﬂtinunuaParamEtE:" [(a.g "C™ 1.01]
H[“EcnleanParamEter“ true false]

| :
d[“:hnlcEParamEter" "near™ "far™]

Parameter Specification ?

Load param ranges from model interface

Figure 1.3: Parameter specification

a program clicking the ’Browse for model’ button at the top of the Behav-
torSearch FExperiment Editor

Then we can save our analyses as .bsearch files and load them clicking file’
and then ’open’; this procedure works only if the .nlogo file is saved in the
same folder of the .bsearch file.

The ’help’ botton contains a direct link to the BehaviorSearch tutorial on
www.behaviorsearch.org.

. Parameter Specification.The next step is to specify settings, or ranges of

settings, for each of the model’s parameters. The easiest way to get started
is to click the 'L.oad param ranges from model interface’ button, which will
automatically extract the parameters/ranges that are included in our model’s
interface tab (i.e. SLIDERS, CHOOSERS, and SWITCHES of our NetLogo

program).

The syntax in this case is the following:

24

e [’parameter-name’ [parameter-range]]. For example in figure 1.2
we have the slider with names ’integerparameter’: for each kind of
variable like this, the parameter-range is specified as

[starting-point increment ending-pointl;

for example in the case of ’integerparameter’ the vision parameter
ranges from 0 up to 10, by increments of 1 (Those kind of parameter
are allowed to variate during the BehaviorSearch analysis).

o [’parameter-name’ parameter-value]. In figure 1.3 we have the
slider named ’fixedParameter’ with this kind of syntax: the value of
the parameter is fixed and does not ranges during the BehaviorSearch
analysis; for example in the case of >fixedParameter’ on figure 1.3, it
is keep fixed at fifteen.

In BehaviorSearch it is also possible to specify a continuous range for
a parameter, by using "C" for the increment; in this case the syntax
is: [’parameter-name’[sart ’C’ stopl]. An example can be shown
in figure 1.3; the variable continuousParameter ranges from 0.0 to 1.0
with continuous values, specified with the command °C’.

e [’parameter-name’ true false] for Boolean parameters. An exam-
ple is in figure 1.3: the variable BooleanParameter can be true or
false.

e [’parameter-name’ ’choicel’ ’choice2’...] for discrete-choice pa-
rameters. Those kind of parameters are a generalization of the Boolean
parameters (we can have multiple situations or conditions that can be
satisfied).An example of this kind of parameter is given in figure 1.2,
through the 'choices’ *near’ and ’>far’ of the variable choiceParameter.

The parameters (that are allowed to variate, such as ’integerParameter’)
loaded for the BehaviorSearch analysis determine the size of the search space;
this space can be seen as a multidimensional space in which each dimension is
represented by a variable parameter (for example if we have only two variable
parameters the search space can be represented graphically through x and y
cordinates).

To determine the size of the search space we have just to : (1) calculate the
total range of each parameter, it is a number; (2) multiply those numbers.

For example

BehaviorSearch is a useful tool when you have a parameter space that’s too
large too enumerate, and you’re willing to use heuristic search methods to
try to find parameters that yield behavior that you're interested in.

25

Setup: |setup

Step: |go

Measure: mean [energy] of turtles

Measure lf: [true

Stop i |count turtles > 1000

Step Limit: 1100 model steps

Figure 1.4: Measure specification

3. Specifying a measure After the parameter specification, (including their
range), the next step is to define which kind of variable we want to measure,
as a function of such parameters; those information can be given in the six
boxes on the upper-left side of the BehaviorSearch Ezperiment Editor. The
cells for Specifying a measure are shown with more detail in Figure 1.4.

Looking at figure 1.4, starting from the top, we have:

e Setup: it refers to the name, in our NetLogo program, of the setup
command (often it is a button called ’setup’). This command is the one
that creates the framework in which the NetLogo program is going to
be implemented /started.

e Step: it identifies the NetLogo command or commands, that let the
program run (in general in NetLogo, it is called 'go’ and it is a procedure
that follows the ’setup’ one). If this procedure contains the command
tick, one step corresponds to one tick.

26

e Measure: it is the variable that we want to analyse with Behav-
torSearch;it is a NetLogo expression, which somehow quantifies the be-
havior that we are interested in searching for.The measure can consist of
any numeric NetLogo expression, what is important is that the measure
is correlated with the behavior we would like to elicit from the model.

e Measure If: it is a (not compulsory) condition on the previous mea-
sure; only if that condition is satisfied, the BehaviorSearch analysis can
be implemented (for example it can refer to : another NetLogo variable
included in the ’step’; a true/false condition; a condition controlling on
which steps the measure takes place, i.e. a condition on ticks).

e Stop If: This command works in the same way of "Measure if’, with the
difference that it defines a stop condition for the model (it is optional).

e Step Limit: On NetLogo, we usually identify procedures with buttons

in the interface; clicking a button, means calling all NetLogo commands
included in such button once. But if we want to let the button work
continuously, we can click on it with the right mouse button, then chose
Edit, and then click on the option forever.
Instead in BehaviorSearch we must specify the number of clicks on the
'g0’ button (we have not the option "forever’), writing down the number
of steps of the NetLogo program, that BehaviorSearch will consider, in
its analysis.

4. Search Method Configuration. This part is not linked to the NetLogo
program; it includes a set of BehaviorSearch options for what concern the
algorithm that will be implemented for the search. Each algorithm owns a
different number of parameters that can be modified(when you select one
kind of algorithm, each window is full filled with the custom values for those
parameters(figure 1.5)).

The structure of the search method configuration can be shown in the graph
of Figure 1.5.

With reference to figure 1.5, starting from the left side of the graph on the
top, we have a button that permits to chose four kind of search algorithms
for the BehaviorSearch analysis:

StandardGA . (custom): it is the genetic algorithm; its characteristics have been
discussed in section 1; its convergence to an optimal solution has been
guaranteed in by the Holland schema theorem (section 1.3).

The algorithm depends on five input parameters.

27

Search Method Configuration

‘StandardGA) i

 Parameter - Value

mutation-rate 003
population-size 50
crossover-rate 0.7
population-model generational
tournament-size 3

|| Use fitness caching

Search Encoding Representation
{Ea'ayﬂ.tnaryﬂrumnsnme -

Figure 1.5: Search Method Configuration

28

e mutation-rate: mutation is a genetic operator used to maintain
genetic diversity from one generation of a population of genetic
algorithm chromosomes to the next. It is analogous to biological
mutation. Mutation alters one or more gene values in a chromosome
from its initial state. In mutation, the solution may change entirely
from the previous solution. Hence GA can come to better solution
by using mutation. Mutation occurs during evolution according to
a user-definable mutation probability. This probability should be
set low. If it is set too high, the search will turn into a primitive
random search.

e population-size: the population size depends on the nature of
the problem; traditionally, the initial population is generated ran-
domly, allowing the entire range of possible solutions (the search
space). During each successive generation, a proportion of the ex-
isting population is selected to breed a new generation. In our case
the population-size is the number of individuals allowed in each gen-
eration. The value of population size must be an integer included
in the interval [1, 1000].

e crossover-rate: In genetic algorithms, crossover is a genetic op-
erator used to vary the programming of a chromosome or chromo-
somes from one generation to the next.The word crossover is often
intended as a process of taking more than one parent solutions and
producing a child solution from them. There are different methods
for selection of the chromosomes, in our case the crossover-rate is
the probability of using two parents when creating a child (other-
wise the child is created asexually).

e population-model: ’generational’, 'steady-state-replace-random’,
or 'steady-state-replace-worst’:
‘generational” means the whole population is replaced at once;
'steady-state’ means that only one single individual is replaced by
reproduction each iteration. The individual being replaced may be
randomly-chosen, or the current worst.

e tournament-size: During each successive generation, a proportion
of the existing population is selected to breed a new generation.
Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typi-
cally more likely to be selected. Certain selection methods rate the
fitness of each solution and preferentially select the best solutions.
Other methods rate only a random sample of the population, as
the former process may be very time-consuming.

29

MutationHillClimber

SimulatedAnnealing :

Tournament selection involves running several ’tournaments’ among
a few individuals chosen at random from the population. The win-
ner of each tournament (the one with the best fitness) is selected
for crossover. Selection pressure is easily adjusted by changing the
tournament size. If the tournament size is larger, weak individuals
have a smaller chance to be selected (Usually 2 or 3 is a good
value).

:In computer science, hill climbing is a mathematical optimization tech-
nique which belongs to the family of local search. It is an iterative algo-
rithm that starts with an arbitrary solution to a problem, then attempts
to find a better solution by incrementally changing a single element of
the solution.

This algorithm is also defined in Holland (1992) as: «One conventional
technique for exploring such a landscape is hill climbing: start at some
random point, and if a slight modification improves the quality of your
solution, continue in that direction; otherwise, go in the opposite di-
rection. Complex problems, however, make landscapes with many high
points. As the number of dimensions of the problem space increases,
the countryside may contain tunnels, bridges and even more convoluted
topological features. Finding the right hill or even determining which
way s up becomes increasingly difficult. »

It depends on the following parameters:

e mutation-rate: controls the probability of mutation; it works in
the same way of the mutation-rate of genetic algorithms.

e restart-after-stall-count: if the hill climber makes some num-
ber (restart-after-stall-count) of unsuccessful attempts to move to
a random neighbor, it assumes it is trapped at a local optimum
in the space, so it restarts by jumping to a new random location
anywhere in the search space.

Hill climbing is good for finding a local optimum (a solution that cannot
be improved by considering a neighbouring configuration) but it is not
guaranteed to find the best possible solution (the global optimum) out
of all possible solutions (the search space).

is a generic probabilistic metaheuristic for the global optimization
problem of locating a good approximation to the global optimum of
a given function in a large search space. It is often used when the
search space is discrete (e.g., all tours that visit a given set of cities).
For certain problems, simulated annealing may be more efficient than
exhaustive enumeration, provided that the goal is merely to find an

30

acceptably good solution in a fixed amount of time, rather than the
best possible solution.

The name and inspiration come from annealing in metallurgy, a tech-
nique involving heating and controlled cooling of a material to increase
the size of its crystals and reduce their defects, both are attributes of
the material that depend on its thermodynamic free energy. Heating
and cooling the material affects both the temperature and the ther-
modynamic free energy. While the same amount of cooling brings the
same amount of decrease in temperature it will bring a bigger or smaller
decrease in the thermodynamic free energy depending on the rate that
it occurs, with a slower rate producing a bigger decrease.

This search algorithm is similar to a hill climbing approach, except
that a downhill (inferior) move may also occur, but only with a certain
probability based on the temperature of the system, which decreases
over time.

At each step, the simulated annealing heuristic considers some neigh-
bouring state s’ of the current state s, and probabilistically decides
between moving the system to state s’ or staying in state s. These
probabilities ultimately lead the system to move to states of lower en-
ergy. Typically this step is repeated until the system reaches a state
that is good enough for the application, or until a given computation
budget has been exhausted.

From a mathematical point of view, the probability of making the tran-
sition from the current state s to a candidate new state s’ is specified
by an acceptance probability function P(e,e’, T) that depends on the
energies e = F(e) and ¢ = E(e’) of the two states, and on a global time-
varying parameter T' called the temperature. States with a smaller
energy are better than those with a greater energy. The probability
function P must be positive even when e’ is greater than e. This fea-
ture prevents the method from becoming stuck at a local minimum that
is worse than the global one.

In general, in order to apply the simulated annealing to a specific prob-
lem, one must specify the following parameters: the state space, the
energy (goal) function E(), the candidate generator procedure neigh-
bour, the acceptance probability function P(), the annealing schedule
temperature and initial temperature. These choices can have a signifi-
cant impact on the method’s effectiveness. Unfortunately, there are no
choices of these parameters that will be good for all problems, and there
is no general way to find the best choices for a given problem.

In BehaviorSearch, simulated annealing depends on four parameters:

31

RandomSearch :

e mutation-rate: it affects how much mutation occurs when choos-
ing a candidate location for moving.

e restart-after-stall-count: if it doesn’t manage to move to a
new location after X attempts, reset the temperature, jump to a
random location in the search space and try again. This parameter
represents the number X of attempts.

e initial-temperature: the system’s initial 'temperature’ (a rea-
sonable choice would be the average expected difference in the fit-
ness function’s value for two random points in the search space).

e temperature-change-factor: the system’s current 'temperature’
is multiplied by this factor (which needs to be less than 1) after
each move. (Using this exponential temperature decay means that
temperature will approach 0 over time. Unfortunately, the optimal
rate for the temperature to decrease varies between problems).It
defines the annealing schedule temperature.

The other parameters, i.e. the candidate generator procedure neigh-
bour, the acceptance probability function P(), are fixed, and cannot be
modified in BehaviorSearch analysis.

it is a family of numerical optimization methods that do not require
the gradient of the problem to be optimized and Random Search can
hence be used on functions that are not continuous or differentiable.
Such optimization methods are also known as direct-search, derivative-
free, or black-box methods.

Let f : R™ — R be the fitness or cost function which must be minimized.
Let x € R" designate a position or candidate solution in the search-
space. The basic Random Search algorithm can then be described as:

(1).Initialize x with a random position in the search-space.
(2).Repeat the following operation until a termination criterion is met:
- Sample a new position y from the hypersphere of a given radius
surrounding the current position x;

- If (f(y) < f(x)) then move to the new position by setting x = y.

(3). Now x holds the best-found position.

Because of its characteristics and its degree of randomness, the random
search does not have any input parameter on BehaviorSearch FExperi-
ment FEditor.

Use Fitness Caching: this controls whether the search algorithm memorizes
the result of the objective (fitness) function every time it gets evaluated, so

32

that it doesn’t have to recompute it if the search returns to those exact same
parameter settings again.

Since running ABM simulations can be time-consuming (especially when
dealing with large agent populations for many ticks), turning on "fitness
caching" can potentially be a considerable time-saver. However, because
ABMs are usually stochastic, each time a point in the space is re-evaluated,
the search process would get a new independent estimation of the value at
that location.

The last button on the bottom of figure 2.5, contains four search space en-
codings.

- StandardBinaryChromosome: in this encoding, every parameter is con-
verted into a string of binary digits, and these sequences are concate-
nated together into one large bit array. Mutation and crossover then
occur on a per-bit basis.

- GreyBinaryCromosome: due to the Hamming distance properties of
Gray codes, they are sometimes used in genetic algorithms. They are
very useful in this field, since mutations in the code allow for mostly
incremental changes, but occasionally a single bit-change can cause a
big leap and lead to new properties.The Hamming distance between
two strings of equal length is the number of positions at which the
corresponding symbols are different. In another way, it measures the
minimum number of substitutions required to change one string into the
other, or the minimum number of errors that could have transformed
one string into the other.

GreyBinaryChromosome is similar to StandardBinaryChromosome, ex-
cept that numeric values are encoded to binary strings using a Gray
code, instead of the standard "high order" bit ordering. Gray codes
have generally been found to give better performance for search repre-
sentations, since numeric values that are close together are more likely
to be fewer mutations away from each other.

It is a binary numeral system where two successive values differ in only
one bit. The reflected binary code was originally designed to prevent
spurious output from electromechanical switches. Today, Gray codes
are widely used to facilitate error correction in digital communications
such as digital terrestrial television and some cable TV systems.

- MizedTypeChromosome: this encoding most closely matches the way
that one commonly thinks of the ABM parameters. Each parameter is
stored separately with its own data type (discrete numeric, continuous

33

numeric, categorical, boolean, etc). Mutation applies to each parameter
separately (e.g. continuous parameters use Gaussian mutation, boolean
parameters get flipped).

- RealHypercubeChromosome: this encoding exists mainly to facilitate
the (future) use of algorithms that assume a continuous numeric space
,such as Particle Swarm Optimization. particle swarm optimization
(PSO) is a computational method that optimizes a problem by iter-
atively trying to improve a candidate solution with regard to a given
measure of quality. PSO optimizes a problem by having a population of
candidate solutions, here dubbed particles, and moving these particles
around in the search-space according to simple mathematical formulae
over the particle’s position and velocity. Each particle’s movement is
influenced by its local best known position but, is also guided toward
the best known positions in the search-space, which are updated as bet-
ter positions are found by other particles. This is expected to move the
swarm toward the best solutions.

In the RealHypercubeCromosome encoding, every parameter (numeric
or not) is represented by a "real-valued" continuous variable; this rep-
resentation allows them to be applied even when some of the model
parameters are not numeric.

5. Objective / Fitness Function. The fitness function defines how the Mea-
sure,i.e. the variable that we want to analyse (explained in point 3), must
converge, in order to meet our work objectives. The convergence is related
to an optimization problem that we want to implement on the search space.

We know how to collect the data(measure specification), but now we need
to turn it into an objective function ("fitness function"). This procedure can
be done completing the table in Figure 1.6.

e Goal: here you specify your objective, i.e maximize or minimize the fitness
function. This fitness function refers to the variable Measure related to
Figure 1.4.

e Collected measure: during one model run, we may have collected the
measure multiple times; you can condense all those values in the follow-
ing ways(the time interval considered for the different measures across steps,
i.e. mean, median, minimum, maximum, variance, sum, is referred to the
command Step Limit ; the starting time for the mean calculation can be

34

Objective / Fitness Function | ? |

Goal: Maximize Fit...

Collected measure: AT_HI'\IALTEI'EF' -

l|.=i1-:-ed Sampling | .1.0

Combine replicates: :ME.I!'.N -
|| Take derivative? Li=e ABS value?
ikl | — « | &=10.0
Evaluation limit: 390 model runs

BestChecking replicates: O

| Run BehaviorSearch

Figure 1.6: Objective / Fitness Function

35

expressed in Measure if, specifying the number of ticks; both commands
are referred to Figure 1.4):

- AT FINAL _ STEP: it reports the last measure calculated as final result
of the analysis; it is useful if you are only interested in the last measure
that was recorded.

- MEAN ACROSS_STEPS: it reports the mean of the multiple mea-
sures implemented;

- MEDIAN ACROSS_STEPS: it reports the median across steps;

- MIN _ACROSS_STEPS: it reports the minimum value measured across
steps ;

- MAX ACROSS_STEPS: it reports the maximum value measured across
steps;

- VARIANCE ACROSS_STEPS: it reports the variance of the values
obtained across steps;

- SUM_ACROSS_STEPS: it reports the sum of all values calculated
across steps.

The calculation of different kind of measures across steps refers to those
values, that are obtained during the BehaviorSearch analysis. How start
this analysis, is explained in the next section.

Fixed sampling: how many times should the model be run? Running the
model once may not give representative results, so you may want to perform
multiple replicate runs (with different initial random seeds), and collect be-
havioral measures from each of them.

Increasing this value will obviously rise the lasting of the BehaviorSearch
analysis.

Combine replicates: it refers to the Fixed sampling number. If you are
doing multiple replicate runs of the model, you have to combine those results,
in order to get a single number for the chosen objective function. This single
number should incorporate the most useful information given by the multiple
replicates. It can be calculated as:

- MEAN: it is just the simple average of the replicates; it is, in general a
good estimator for a realisation of the sample.

- MEDIAN: may be a better choice if your measure occasionally yields
extremal (too high or too low) outlier values, which you’d like to ignore.

36

- MIN/MAX: that is the opposite of median; you are interested in pa-
rameters that cause extreme behavior; it may mean the lowest(MIN) or
the greatest(MAX) value obtained in the replicates.

- VARIANCE: In probability theory and statistics, variance measures
how far a set of numbers is spread out. A small variance indicates
that the data points tend to be very close to the mean and hence to
each other, while a high variance indicates that the data points are
very spread out from the mean and from each other. Its usefulness
depends on the object of our analysis: choices may be useful for finding
parameters for which there is volatility in whether the model exhibits
a behavior or not. Such volatility might indicate a phase transition
between two regimes of model behavior.

- STDEV: in statistics and probability theory, the standard deviation
shows how much variation or dispersion from the average exists. A low
standard deviation indicates that the data points tend to be very close
to the mean; a high standard deviation indicates that the data points
are spread out over a large range of values. It is the square root of the
variance;it works in the same way of variance, except that the fitness
function values will be in the same units of the original parameter,
which may be preferable for human interpretation.

e Take derivative?: sometimes you would like to find a point in the param-
eter space where the change in your behavioral measure is maximized (or
minimized) with respect to a small change in some parameter. Such places
may indicate a phase transition, critical point, or leverage point. The Take
derivative? option allows you to maximize /minimize the approximate deriva-
tive of your fitness function with respect to a specified parameter(w.r.t.
that stays for 'with respect to’) and a specified delta (A =, i.e. the change
amount).

If you choose the special value "@MUTATEQ’ then finds a neighbouring
point in the search space using mutation from the parameter settings being
evaluated, with the mutation rate specified by delta.

This operation can be considered as a partial derivative of a function of
several variables; it is the derivative with respect to one of those variables,
with the others held constant.

The partial derivative with respect to 27 of a function in R™,i.e. f(x1,zo,...2,),

can be expressed as: %. In our case the A = is the dx;, where x; is the

parameter specified in the cell w.r.t.; the value that we want to calculate ,
corresponds to the variation of our fitness function, i.e. df.

37

e Use ABS value?: if it is checked, then the reported difference is always
positive.

e Evaluation limit: it corresponds to the number of model runs; after this
number the BehaviorSearch analysis stops.

e BestChecking replicates: the number of additional replicate model runs
that should be performed to get an unbiased estimate of the true objective
function value, each time the search algorithm finds a new set of parameters
that it thinks is "better" than any previous set.

The motivation for this is that ABMs are usually stochastic, and when sam-
pling a measure a small/finite number of times (such as 5, in our example
here), there is likely to still be some "noise" in the objective function. Thus
a search algorithm may appear to be making progress, finding better and
better parameter settings, when in fact the better results are due to random
noise. Using BestChecking replicates can help you identify when this is the
case.

Also, since new "bests" are found relatively infrequently, you can usually
afford to specify a higher number of BestChecking replicates than you can
for normal sampling, yielding more statistically significant reading of the
objective function as the best parameters that the search found.

BestChecking replicates are not counted against the total "model run" limit
for the search. These replicates are extrinsic to the search process, but are
included in the output results to evaluate the search performance, and verify
the objective function values that are obtained.

1.3.3 Run BehavorSearch

After the completion of the BehaviorSearch Ezperiment Editor, to start the anal-
ysis you have to click on the button Run BehaviorSearch (shown in figure 1.6
down in the lower right corner of the window); the table that will appear to you
is called Choose experiment running option, and can be seen in Figure 1.7.

Looking at figure 1.7, we have to complete the following five cells.
e Output file system: it should be written here the address where to save

the output data from the search. More in deep, a number of files will be
created, each starting with this same file name ’stem’.

38

¥ Choose experiment running options 2L |

Ouiput file stem: ‘ Browse. ..
Number of searches: 15
Starting at search 1D: 15
Initial random seed: 2.084.744.950 = | New |

Number of threads: | 4

| Brief Output?

| Start Search || Cancel

Figure 1.7: Choose experiment running option

e Number of searches: it represents the number of times the search is re-
peated. A single search may not find the best parameter; additional searches
improve confidence (but it will require additional time to be implemented).

e Starting at search ID:itis a number that identifies the results of the cur-
rent search (it works as an ID); this number is saved in the Qutput file system.

e Initial random seed: a random seed (or just seed) is a number (or vector)
used to initialize a pseudo-random number generator. Starting the search
with the same random seed keeping all the parameters in the BehavorSearch
Experiment Editor unchanged, will always lead to the same results; this is
useful to repeat exately the same searches, or changing the algorithm of
the search, to compare the effectiveness of the different searching algorithms
(explained in section 1.3.2 point 4) for a given fitness function.

e Number of threads: this number indicates the number of processors/cores
used for the analysis; for a multi-core/multi processor computer the running
time for the search should be lower. The number of threads does not affect
the results obtained, only the time spent.

Brief Output?: BehaviorSearch’s default behavior is to create a variety of
output data files (discussed below), some of which can be quite large (containing
the results of all model runs and all objective function evaluations). With this
option suppresses the creation of the two largest output files.

39

1.3.4 Examples

Although BehaviorSearch is though as a tool to evolve models, in an ABM frame-
work, it can be also used as a combinatorial search tool.

In fact, ABMs are typically implemented as computer simulations, either as
custom software, or via ABM toolkits, and this software can be then used to
test how changes in individual behaviors will affect the system’s emerging overall
behavior.

However, to let the reader understand deeply how BehaviorSearch works, I
will proceed by analysing three very simple optimisation problems: I will show
you, with some basic examples, how some NetLogo programs can be analysed by
BehaviorSearch.

All these programs create a framework of simple optimization problems in two
discrete variables. It means that I have the range of x, the range of y, and the
function f(x,y); the objective of the search is to find the optimal point of the
function f(x,y).

It means that the whole space can be represented by three dimensions, i.e. x,

y, f(xy).

An optimization problem with discrete variables is known as a combinatorial
optimization problem. In a combinatorial optimization problem, we are looking
for an object such as an integer, permutation or graph from a finite (or possibly
countable infinite) set (to convert the problem into an optimization problem with
continuous variables (in ®?) it should be sufficient to change the variable step using
'C’; it is explained in section 1.3.2 point 2).

The name combinatorial search is generally used for algorithms that look for
a specific sub-structure of a given discrete structure, such as a graph, a string,
a finite group, and so on. The term combinatorial optimization is typically used
when the goal is to find a sub-structure with a maximum (or minimum) value of
some parameter. (Since the sub-structure is usually represented in the computer
by a set of integer variables with constraints, these problems can be viewed as
special cases of constraint satisfaction or discrete optimization; but they are usually
formulated and solved in a more abstract setting where the internal representation
is not explicitly mentioned.)

The three basic examples, that I will show you in the next section, are named
localH, localH2, localHS5.

Note that all the references to loading or search times required for next Behav-
iorSearch analyses (of Section 1.3) , are related to a computer with the following
characteristics:

o Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz 2.50 GHz

40

Interface |Eﬁ, Code

B ¥ e | l el W

Edit Delete Add

normal speed continuous -

setup

14,52 |

ge

max height
9,99797398539

localH - maxH
0

Figure 1.8: localH.nlogo interface

RAM 6,00 GB

Case 1

localH.nlogo

the range of x and y coordinates is given through the two sliders xpos
(position of x), and ypos (position of y). The third dimension z (f(x,y)) is
built by the NetLogo program, by reading its values from the base.txt file.
The NetLogo program looks as follows:

globals [maxH localDiff]

patches-own [height]

41

to setup

__clear-all-and-reset-ticks

file-open 'base.txt"

while [not file-at-end?]

L
ask patch file-read file-read
[set height file-read+
set pcolor 90 + height]
]

file-close

crt 1 [set size 1 set color red set shape '"circle"]
set maxH O
ask patches
[if height >= maxH
[set maxH height]

end
to go
ask turtle 0
[set xcor xpos
set ycor ypos
set localDiff height - maxH]

end

Most important parts of code:

- The function f(x,y) is created with the values red from the file, through
the cycle:

while [not file-at-end?]
L
ask patch file-read file-read [set height file-read

42

99 99.9

Figure 1.9: NetLogo table of colors: blue

set pcolor 90 + heightl]
]

In NetLogo, you can define colors with numbers. Moreover the program
associates different highs, to different colors. The benchmark used in
our case is showed in Figure 1.9.

- The global variable maxH represents the maximum value of f(x,y) calcu-
lated with the commands:

ask patches
[if height >= maxH
[set maxH height]
]

- It is created one agent with the command
crt 1 [set size 1 set color red set shape "circle'].

With the go button, the program moves this agent in the NetLogo world-
space, according to the coordinates specified by the two sliders xpos and
ypos. The related commands are:

ask turtle O
[set xcor xpos
set ycor ypos

- The variable localDiff reports the difference between the maximum
value of f(x,y) and the current position of the agent. (when you click
the button setup the agent position is set equal to the origin (0,0). The
related command is:

set localDiff height - maxH]
The numbers contained in the file base.txt are created through a sim-

ple Python code, saved in the base.py file.

43

base.py
import random
f=open("base.txt","w"
for i in range(41):
for j in range(41):
print >>f, i, j, random.random()*10
f.close()

In the code above, f is the variable that contains the command that
opens the file in writing mode ("w"); the two for cycles are implemented
to build the whole space, that is obtained by creating 41 x41 = 1681 ran-
dom numbers with the command random.random()*10 (the command
random.random() returns the next random floating point number in
the range [0.0 , 1.0)).

localH.bsearch : In our case BehaviorSearch analysis is performed in order to find the max-
imum value of f(x,y) previously defined. Since we know in advance the value
of the maximum value of the function from the file base.txt (it is also
evaluated in the NetLogo program, and showed in the interface through a
monitor), T will use as 'fitness function’ the variable localDiff.

Indeed the BehaviorSearch Experiment Editor completed, is showed in Figure
1.10.

In this analysis the major part of the commands given to the BehaviorSearch
Ezxperiment Editor are default commands that are loaded when you click
Browse for model... for the first time; the only exception is represented
by the Parameter specification (remember to always press the button

load param ranges from model inteface to chose the correct variables
for the analysis) and Specifying a measure.

In this example the search space is composed by the two variables xpos and
ypos and its size is 4100 x 4100 = 16810000.

The Step limit is set equal to one, because the optimization problem lasts
only one NetLogo tick (it is not a problem that needs to run continuously to
get the solution).

In practice in our case with StandardGA, BehaviorSearch will create an initial
population of random positions in the space, where each position corresponds
to a particular scenario obtained with one press of the button go.

Then the population is evolved 5000 times (i.e. the Evaluation limit)
through the genetic algorithm.

44

[Eite Help
JUsersmacbookpro/Desktop/pt/behaviorSearch localH.nlogo | Browse for model, ..
Parameter Specification | ? | Setup: |setup
["wpos™ [0 0.01 4011 Step: g0
["ypos™ [0 0.01 4071]
Measure: |lncalDif:‘
Measure If: |t rue
stoplf: |
| Load param ranges from model interface | Step Limit: 1 model steps
Search Method Configuration Objective / Fitness Function | g

StandardGa > (i) Goal: | Maximize Fit.. |

Parameter Value Collected measure: | AT_FINAL_STEF -
mutation-rate 0.01 — - n
population-size 50 Fixed Sampling » | |10
Tossover-ate 0.7 - -
population-model generational Combine replicates: | i
tournament-size 3 -

|| Take derivative? Use ABS value?
Wil t. | nrandomagents A= (0,0
|¥] Use fitness caching Evaluation limit: 5000 | model runs
Search Encoding Representation BestChecking replicates: 0
StandardBinaryChromos...) | Run BehaviorSearch

Figure 1.10: localH.bsearch

After the completion of the table

Choose experiment running option, the true search can finally start.
Some results can be seen in Figures 1.11, 1.12; here you can see that the results
change depending on the seed chosen (keeping all other commands fixed).

The main analysis can be seen in the Search Progress table:
here it is possible to view the evolution of the search through a graph where the
X axis represents the number of model runs, and the y axis is the Fitness function.

45

Search Progress

From all searches:
Best found so far:
xpos=12.5400
¥pos=32.8300

Fitness=-0.270056

0 500 1.000 1.500 2.000 2,500 3.000 3,500 4.000 4,500 5,000
£ of model runs

Finished search 1 of 1: | 100% {3:51 elapsed - 0-7 remaining)

Figure 1.11: Result with initial random seed -448.067.020

46

Search Progress

From all searches:
Best found so far:
xp0s=24.5000
ypos=12.4700

Fitness=-0.0664188

Fithess

0 500 1000 1500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
of model runs

Finished search 1 of 1: (3:49 elapsed - 0:-2 remaining).

Figure 1.12: Result with initial random seed 693.127.994

47

Search Progress
0,00 In Search #1:
0,05) _
Best found so far:
0,10 xpos=35.1000
0,15 vpos=32 6500
-0,20 Fitness=-0.241444
0,25
E e
-0,30
-0,35
0,40
0,45
0 250 500 750 1000 1250 1500 1750
& of model runs
= Search 1

Performingsearch1of1: [| (119 elapsed- 2:22 remainin.
[Cancel J

Figure 1.13: Partial result

In the rectangle on the right side of the Search Progress table, we have the
values of the parameters loaded in the Parameter Specification table (section
1.3.2 point 2), corresponding to the Fitness value calculated so far.

Moreover consider the BehauviorSearch results ,with reference to Figure 1.13.
We can see:

e Performing search 1 of 1(2 of 2): it is the percentage of completion of
the search (showed through the blue bar). It can be stopped at any time by
clicking the Cancel button.

Note that once stopped, the search cannot be restarted.

Now consider the Figure 1.14; here we have:

48

Search Progress

0,0 From all searches:
-0,11
-0,21 Best found so far:
" %p0s=22.0400
0,4 vpos=26.3400
0,51
o 0,6 Fitness=-0.0169206
Q 0,71
£ 08
n,g
-1,01

44
-1,24
-1,31
1,4

0 500 1.000 1.500 2,000 2,500 2,000 3500 4,000 4,500 5,000
& of model runs

—.Elaqnh 1 — S.E.imh:g

Finished search 2 of 2 NS "L S| (8.03 elapsed - 0:-2 remaining)

Figure 1.14: Result with Number of Searches = 2

49

e Finished search 2 of 2: the number 2 of 2 refersto the command given
in the Choose experiment: running options: showed in Figure 1.7.

Improving the number of searches will lead to better results, since in this
case the different searches are not completely independent: each analysis
takes into account the result obtained in the previous one.

In the example of Figure 1.14 the two searches are showed in the Search Progress
table (blue and red line).

Consider that the value of max heigh is 9.999; we expect a Fitness function as
close as possible to zero. Performing a lot of searches with the StandardGA, I can
conclude that the value of the Fitness function lays on average in an interval of
[-0.3 -0.02].

Those results seem to confirm the convergence of the GA.

Case 2

localH2.nlogo :this program is very similar to the previous one, localH.nlogo; the only thing
that changes is the formation of of the variable heigh: it is no more generated
through a file, but through the following code.

ask patches
[set height pxcor * 0.12499 + pycor * 0.12499}
set pcolor height + 90]

(pxcor and pycor are 'patch x coordinate’, 'patch y coordinates’, as in the
previous case localH.nlogo).

With this structure we can manually calculate the variable max heigh, that
is in fact equal to

"'maz’prcor x 0.12499 +" max'pycor x 0.12499 = 9.999

(with 'max’ pxcor = 40 = 'max’ ycor)

Moreover since the value of heigh is conditioned by the patch coordinates, it
increases smoothly as the coordinates increase, generating the graph showed
in Figure 1.15.

We can say that the function that generates the space of the program localH2
is monotone, although we are considering discrete variables.

(more in deep if we want to obtain graphs as in Figures 1.8 , 1.15, with the
origin centred in the down-left corner, we must click with the right mouse

20

Interface | Info I Code:

/

A | Do | o
abe Button I T I i g
Edit Delet= Add ! ; _ '

localH2.bsearch

max height
8,99592

localH - maxH
0

Figure 1.15: localH2.nlogo interface

button on the NetLogo monitor (world) choosing edit and then modify the
command Location of origin, choosing the option corner).

. as in localH.bsearch we are looking for a value of the variable localDiff
as close as possible to zero.

The BehaviorSearch Erperiment Editor is equal to the one showed in Figure
1.10.

An example of BehaviorSearch result, for localH2, can be seen in Figure
1.16.

o1

Search Progress

C.00 From all searches:
0,25
{150 Best found so far:
’ Xpos=39.5600
0,75 ¥pos=39.9700
-1,00 _
Fitness= 0.00000

Fithess

-1,50
1,75
2,25
-2,50
2,75

0 500 1000 1500 2,000 2,500 3,000 3500 4,000 4,500 5.000
& of model runs

Finished search 1 of 1: || (0:07 elapsed - 0:00 remaining)

Figure 1.16: localH2.bsearch result

52

We can note that the StandardGA works significantly better and faster than
in the previous case with localH, although the search space has the same size.

In this case the genetic algorithm often leads to a fitness equal to zero (as in
Figure 1.16).

This because the conformation of the search space(distribution of the dif-
ferent heigh in these examples) strongly influences the results of the search,
making the different searching algorithms (section 1.3.2, point 4) more or
less effective.

Case 3

localH3.nlogo : this program works as the previous localH.nlogo and localH2.nlogo; as be-

fore, the only difference is in the construction of the third dimension (heigh),
that is formed with the following code:
ask patches

[set height pxcor * 0.1 + pycor * 0.1 +

sin (pxcor * 30) + sin (pycor * 30)

if height < 0 [set height 0]

set pcolor height + 90]

In this case we cannot calculate the maximum value of the variable height
as in localH2 . In fact if we consider the max pxcor and the max pycor we
get:

heigh = 40 x 0.1 + 40 x 0.1 + sin(1200) x 2 = 9.73

that is less than the max heigh. The effect of this code on the patch color, in
the NetLogo interface, can be seen in Figure 1.17; here we can also see that
max height is equal to 9.8.

For localH3, the function that characterizes the search space is oscillating;
but it is also smoothed (since we are in discrete time it does not make sense
to define the function 'monotone in intervals’ because we are considering
discrete variables).

93

Interface | Info | Codel

S e | I i] —
Edit Delete Add

normal speed 'mnbrmous v';
setup \;ﬁéﬁi# M:ﬁq

max height
9.8

localH - maxH
-0,4679491924311243

Figure 1.17: localH3.nlogo interface

o4

Search Progress
0,0
! [From all searches:
'—l
-0,5 i
A Best found so far:
-1,0 [xpos=30.4500
ypos=38§_6800
1,5 ’—-
= Fitness= 0.00000
®© 201 |
]
=
£ 25 f
3,0
35{
-4,0 JJ
-4,5
i SO0 1,000 1.500 2000 2500 2.000 3,500 4,000 4,200 5,000
& of model runs
Finished search 1 of 1: | IR TR (0:03 elapsed - 0:00 remaining)

Daone |

Figure 1.18: localHS3.bsearch result

localH3.bsearch : its BehaviorSearch FExperiment Editor looks as the one in Figure 1.10.

Performing a lot of analyses with BehaviorSearch we can note that the Stan-
dardGA works better than in localH.bsearch and it is faster (as happened
with localH2.bsearch).

An example of BehaviorSearch result can be seen in Fig